Sponges are an ancient metazoan group with broad ecological, evolutionary, and biotechnological importance. As in other marine invertebrates with a biphasic life cycle, the developing sponge undergoes a significant morphological, physiological, and ecological transformation during settlement and metamorphosis. In this study, we compare new transcriptome datasets for three life cycle stages of the red sponge (Mycale phyllophila) to test whether gene expression (as in the model poriferan, Amphimedon queenslandica) also varies more after settlement and metamorphosis. In contrast to A. queenslandica, we find that the transcriptome of M. phyllophila changes more during the earlier pre-competent larva/post-larva transition that spans these defining events. We also find that this transition is marked by a greater frequency of significantly up-regulated Gene Ontology terms including those for morphogenesis, differentiation, and development and that the transcriptomes of its pre-competent larvae and adult are distinct. The life cycle transcriptome variation between M. phyllophila and A. queenslandica may be due to their long separate evolutionary histories and corresponding differences in developmental rates and timing. This study now calls for new transcriptome datasets of M. phyllophila and other sponges, which will allow for tests of the generality of our life cycle expression differences and for the greater exploitation of poriferans in both basic and applied research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690027 | PMC |
http://dx.doi.org/10.3390/genes6041023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!