Evaluation of the inhibitory effects of heavy metals on anammox activity: A batch test study.

Bioresour Technol

College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China. Electronic address:

Published: January 2016

This study evaluated the interactive effect of Cu(II) and Zn(II) on anaerobic ammonium oxidation (anammox) activity using response surface methodology with a central composite design. A regression model equation was developed and validated to predict the normalized anammox activity (NAA) of anammox granules exposed to various heavy metal concentrations. The joint inhibitory effect tended to exacerbate initially and reversed as the concentrations increased and then moderated again. The most severe inhibition, resulting in a NAA of 20.1%, occurred at Cu(II) and Zn(II) concentrations of 16.3 and 20.0mgL(-1), respectively. Notably, the cumulative toxicity was mitigated with the aid of intermittent exposure acclimatization. Additionally, pre-exposure to Cu(II) in the absence of substrates strongly inhibited anammox activity. However, the presence of NO2(-) significantly enhanced Cu(II) inhibition. Therefore, such conditions should be avoided to minimize the disturbance of the anammox process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.10.035DOI Listing

Publication Analysis

Top Keywords

anammox activity
16
cuii znii
8
anammox
6
evaluation inhibitory
4
inhibitory effects
4
effects heavy
4
heavy metals
4
metals anammox
4
activity
4
activity batch
4

Similar Publications

Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).

View Article and Find Full Text PDF

Simultaneous nitrogen removal and phosphorus recovery in granular sludge-based partial denitrification/anammox-hydroxyapatite precipitation (PD/A-HAP) process under low C/N ratio and dissolved oxygen limitation.

Bioresour Technol

January 2025

School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.

This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.

View Article and Find Full Text PDF

Effects of pristine and photoaged tire wear particles and their leachable additives on key nitrogen removal processes and nitrous oxide accumulation in estuarine sediments.

J Hazard Mater

January 2025

School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China. Electronic address:

Despite growing attention to the environmental pollution caused by tire wear particles (TWPs), the effects of pristine and photoaged TWPs (P-TWPs and A-TWPs) and their TWP leachates (TWPLs; P-TWPL and A-TWPL) on key nitrogen removal processes in estuarine sediments remain unclear. This study explores the responses of the denitrification rate, anammox rate, and nitrous oxide (NO) accumulation to P-TWP, A-TWP, P-TWPL, and A-TWPL exposure in estuarine sediments, and assesses the potential biotoxic substances present in TWPLs. P-TWPs reduced the denitrification rate by 17.

View Article and Find Full Text PDF

Achieving stable partial nitrification by exploiting lag phase of NOB recovery for selective washout.

Environ Res

January 2025

Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.

Stable inhibition of nitrite-oxidizing bacteria (NOB) is a significant challenge in achieving partial nitrification (PN) and partial nitrification-anaerobic ammonia oxidation (PNA). Growing evidence suggested that NOB can develop resistance to suppression over time, leading to the re-enrichment of NOB within reactors. To address these issues, this study aimed to achieve stable PN by regulating SRT to selectively washout NOB during the lag phase of activity recovery following FA/FNA exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Continuous high-intensity light exposure significantly reduces the activity of anaerobic ammonium oxidation (anammox) bacteria, leading to a rapid decline in nitrogen removal efficiency (NRE) in reactors.
  • The study found that adding tea polyphenols helped maintain higher NREs (75.2% and 82.5%) by protecting the anammox bacteria from oxidative damage caused by light.
  • Results indicated that while certain bacteria like Candidatus Kuenenia were negatively affected by light, others thrived, offering insights for improving nitrogen removal systems in environments with light exposure.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!