An analytical method was developed to detect mandipropamid residues in sesame leaves using high-performance liquid chromatography-ultraviolet detection. Samples were extracted with acetonitrile and were prepurified using a solid-phase extraction (SPE) cartridge with an additional dispersive-SPE (d-SPE) sorbent application. The method was validated using an external calibration curve prepared using pure solvent. The linearity was excellent with determination coefficient = 1. The limits of detection and quantification were 0.003 and 0.01 mg/kg, respectively. Recoveries at three spiking levels - 0.1, 0.5, and 1.0 mg/kg - were in the range 80.3-90.7% with relative standard deviations <2%. This method was applied to field-treated samples collected from two different areas, Gwangju and Muan, in the Republic of Korea and the half-lives were similar, 5.10 and 5.41 days, respectively. The pre-harvest residue limit was also predicted for both sites. The proposed method is sensitive and able to quantify trace amounts of mandipropamid in leafy vegetables. The combination of SPE and d-SPE effectively removed the matrix components in sesame leaves. Copyright © 2015 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmc.3638 | DOI Listing |
Chem Pharm Bull (Tokyo)
December 2024
Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University.
Sesame (Sesamum indicum L.) is an important oilseed crop, and its seeds are a source of edible oil and widely used as a nutritious food that is beneficial to health in oriental countries. Phytochemical and biological investigations of the seeds have been well reported; however, those of the leaves have been limited.
View Article and Find Full Text PDFPlant Biotechnol J
November 2024
Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
Biomass crops engineered to accumulate energy-dense triacylglycerols (TAG or 'vegetable oils') in their vegetative tissues have emerged as potential feedstocks to meet the growing demand for renewable diesel and sustainable aviation fuel (SAF). Unlike oil palm and oilseed crops, the current commercial sources of TAG, vegetative tissues, such as leaves and stems, only transiently accumulate TAG. In this report, we used grain (Texas430 or TX430) and sugar-accumulating 'sweet' (Ramada) genotypes of sorghum, a high-yielding, environmentally resilient biomass crop, to accumulate TAG in leaves and stems.
View Article and Find Full Text PDFPlant Dis
November 2024
USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, Washington, United States, 99164;
Plant Biotechnol J
December 2024
Department of Plant Science, McGill University, Ste Anne de Bellevue, QC, Canada.
Plant Dis
September 2024
Nanjing Agricultural University, Department of Plant Pathology, No. 1 Weigang Rd, Nanjing, China, 210095;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!