Background: Electrochemical oxidation considered to be among the best methods in waste water desalination and removing toxic metals and organic pesticides from wastewater like Methidathion. The objective of this work is to study the electrochemical oxidation of aqueous wastes containing Methidathion using boron doped diamond thin-film electrodes and SnO2, and to determine the calculated partial charge and frontier electron density parameters.
Results: Electrolysis parameters such as current density, temperature, supporting electrolyte (NaCl) have been optimized. The influences of the electrode materials on methidathion degradation show that BDD is the best electrode material to oxidize this pesticide organophosphorous. Energetic cost has been determinate for all experiments. The results provide that 2 % of NaCl, 60 mA cm(-2) and 25 ºC like the optimized values to carry out the treatment. For BDD the achieved Chemical Oxidation Demand reduction was about 85 %, while for SnO2 it was about 73 %. The BDD anode appears to be the more promising one for the effective electrochemical treatment of methidathion. Finally the theoretical calculation was done by using the calculation program Gaussian 03W, they are a permit to identify the phenomena engaged near the electrode and to completely determine the structures of the products of electrochemical oxidation formed during the degradation and which they are not quantifiable in experiments because of their high reactivity.
Conclusions: The comparison of the results relating to the two electrodes indicates that these materials have a power to reduce the quantity of the organic matter in the electrolyzed solution. But the speed of oxidation of these compounds is different according to the materials of the electrodes used. Graphical abstract:Structural of methidathion [O,O-dimethyl-S-(5-methoxy-1,3,4-thiadiazolinyl-3-methyl) dithiophosphate] used for study the electrochemical oxidation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612587 | PMC |
http://dx.doi.org/10.1186/s13065-015-0136-x | DOI Listing |
Biosens Bioelectron
January 2025
Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:
The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Electrochemical oxidation via in situ-generated reactive oxygen species (ROS) is effective for the mineralization of refractory organic pollutants. However, the oxidation performance is usually limited by the low yield and utilization efficiency of ROS. Herein, a B/N-doped diamond (BND) flow-through electrode with enhanced SO/OH generation and utilization was designed for electrochemical oxidation of organic pollutants in sulfate solution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.
Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa.
Point of Care (POC) diagnosis provides an effective approach for controlling and managing Neglected Tropical Diseases (NTDs). Electrochemical biosensors are well-suited for molecular diagnostics due to their high sensitivity, cost-effectiveness, and ease of integration into POC devices. Schistosomiasis is a prominent NTD highly prevalent in Africa, Asia, and Latin America, with significant socioeconomic implications such as discrimination, reduced work capacity, or mortality, perpetuating the cycle of poverty in affected regions worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!