We investigated the one-step synthesis of CdS nanoparticles via green synthesis that used aqueous extract of watermelon rind as a capping and stabilizing agent. Preliminary phytochemical analysis depicted the presence of carbohydrates which can act as capping and stabilizing agents. Synthesized CdS nanoparticles were characterized using UV-visible, Fourier transform infrared spectroscopy, X-ray diffraction, EDX, dynamic light scattering, transmission electron microscopy, and atomic force microscopy techniques. The CdS nanoparticles were found to be size- and shape-controlled and were stable even after 3 months of synthesis. The results suggest that watermelon rind, an agro-waste, can be used for synthesis of CdS nanoparticles without any addition of stabilizing and capping agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599617 | PMC |
http://dx.doi.org/10.2147/IJN.S79988 | DOI Listing |
Carbohydr Polym
March 2025
Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China. Electronic address:
Cyclodextrins (CDs) are cyclic polysaccharides characterized by their unique hollow structure, making them highly effective carriers for pharmaceutical agents. CD-based delivery systems are extensively utilized to enhance drug stability, increase solubility, improve oral bioavailability, and facilitate controlled release and targeted delivery. This review initially provides a concise overview of nano drug delivery systems, followed by a detailed introduction of the structural features and benefits of CDs.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China. Electronic address:
The accurate detection of carbamate pesticides popularly employed in agricultural products is critical for reducing the threat of resultant residues to human health. In this work, a regenerable nanofilm used for SERS substrate was constructed by interfacially confined self-assembly incorporating CdS nanowires (CdSNWs) and Ag nanoparticles (AgNPs). The constructed AgNPs-CdSNWs/Nanofilm could significantly enhance the Raman signals of three carbamate pesticides (metolcarb, carbaryl and aldicarb-sulfone).
View Article and Find Full Text PDFMikrochim Acta
January 2025
Guizhou Province, Qianzhi Mingguang Soaphorn Rice Processing Base, Zhijin County, Maochang Town, Bijie CityBijie City, 552103, China.
A smartphone-based non-invasive method was developed for salivary uric acid detection using Gleditsia Sinensis carbon dots (GS-CDs). The GS-CDs synthesized by the one-pot hydrothermal method emitted blue fluorescence at a maximum excitation wavelength of 350 nm and had good fluorescence stability in the presence of different ions, while showing selectivity to uric acid solution. The ability of uric acid (UA) to quench the fluorescent substances present in the GS-CDs, was confirmed through HPLC-FLD and LC-MS, FTIR and XPS.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China. Electronic address:
Encapsulating enzymes in metal-organic frameworks (MOFs) enhances enzyme protection and improves the accuracy of inhibitor recognition and screening. Zeolitic imidazolate framework-8 (ZIF-8) has been widely used as a host matrix for enzyme immobilization. However, challenges such as the microporous structure and hydrophobicity of ZIF-8, along with the protonation of 2-methylimidazole, hinder the maintenance of activity and the rapid formation of composite.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Hebei Lansheng Bio-Tech Co, Ltd, Shijiazhuang, 052263, P. R. China.
A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!