The MAP3 kinase, TAK1, is known to act upstream of IKK and MAPK cascades in several cell types, and is typically activated in response to cytokines (e.g., TNF, IL-1) and TLR ligands. In this article, we report that in human neutrophils, TAK1 can also be activated by different classes of inflammatory stimuli, namely, chemoattractants and growth factors. After stimulation with such agents, TAK1 becomes rapidly and transiently activated. Blocking TAK1 kinase activity with a highly selective inhibitor (5z-7-oxozeaenol) attenuated the inducible phosphorylation of ERK occurring in response to these stimuli but had little or no effect on that of p38 MAPK or PI3K. Inhibition of TAK1 also impaired MEKK3 (but not MEKK1) activation by fMLF. Moreover, both TAK1 and the MEK/ERK module were found to influence inflammatory cytokine expression and release in fMLF- and GM-CSF-activated neutrophils, whereas the PI3K pathway influenced this response independently of TAK1. Besides cytokine production, other responses were found to be under TAK1 control in neutrophils stimulated with chemoattractants and/or GM-CSF, namely, delayed apoptosis and leukotriene biosynthesis. Our data further emphasize the central role of TAK1 in controlling signaling cascades and functional responses in primary neutrophils, making it a promising target for therapeutic intervention in view of the foremost role of neutrophils in several chronic inflammatory conditions.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1402752DOI Listing

Publication Analysis

Top Keywords

tak1
9
growth factors
8
functional responses
8
neutrophils
5
activation tak1
4
tak1 chemotactic
4
chemotactic growth
4
factors impact
4
impact human
4
human neutrophil
4

Similar Publications

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Liver ischemia-reperfusion (IR) injury is a common complication following liver surgery, significantly impacting the prognosis of liver transplantation and other liver surgeries. Betaine-homocysteine methyltransferase (BHMT), a crucial enzyme in the methionine cycle, has been previously confirmed the pivotal role in hepatocellular carcinoma, and it has also been demonstrated that BHMT inhibits inflammation, apoptosis, but its role in liver IR injury remains unknow. Following I/R injury, we found that BHMT expression was significantly upregulated in human liver transplant specimens, mice and hepatocytes.

View Article and Find Full Text PDF

Immune cell infiltration and keratinocyte (KC) hyperproliferation are characteristics of psoriasis. Radical S-adenosyl methionine domain-containing 2 (RSAD2) plays an integral role in the innate immune response and is associated with various immune-related diseases. However, RSAD2's expression and role in modulating immune responses in psoriasis remain unexplored.

View Article and Find Full Text PDF

TNFAIP3-interacting protein 1 (ABIN-1) negatively regulates caspase-8/FADD-dependent pyroptosis.

FEBS J

January 2025

Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China.

TNFAIP3-interacting protein 1 (TNIP1; also known as ABIN-1) is a ubiquitin-binding protein that suppresses death-receptor- or Toll-like receptor-mediated apoptosis and necroptosis; however, it remains unclear whether ABIN-1 is capable of regulating pyroptosis. In the present study, we found that, in mouse embryonic fibroblasts and macrophages, ABIN-1 deficiency sensitized cells to poly(I:C) + TAK1 inhibitor 5Z-7-oxozeaenol-induced pyroptosis besides apoptosis and necroptosis. The sensitizing effect of ABIN-1 deficiency on pyroptosis depended on caspase-8 and its adaptor molecule FAS-associated death domain protein.

View Article and Find Full Text PDF

Plasticity of cell death pathways ensures GSDMD activation during Yersinia pseudotuberculosis infection.

Cell Rep

January 2025

Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore. Electronic address:

Macrophages express pattern recognition and cytokine receptors that mediate proinflammatory signal transduction pathways to combat microbial infection. To retaliate against such responses, pathogenic microorganisms have evolved multiple strategies to impede innate immune signaling. Recent studies demonstrated that YopJ suppression of TAK1 signaling during Yersinia pseudotuberculosis infection promotes the assembly of a RIPK1-dependent death-inducing complex that enables caspase-8 to directly cleave and activate gasdermin D (GSDMD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!