Intricate Roles of Mammalian Sirtuins in Defense against Viral Pathogens.

J Virol

Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA

Published: January 2016

For a number of years, sirtuin enzymes have been appreciated as effective "sensors" of the cellular environment to rapidly transmit information to diverse cellular pathways. Much effort was placed into exploring their roles in human cancers and aging. However, a growing body of literature brings these enzymes to the spotlight in the field of virology. Here, we discuss sirtuin functions in the context of viral infection, which provide regulatory points for therapeutic intervention against pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702534PMC
http://dx.doi.org/10.1128/JVI.03220-14DOI Listing

Publication Analysis

Top Keywords

intricate roles
4
roles mammalian
4
mammalian sirtuins
4
sirtuins defense
4
defense viral
4
viral pathogens
4
pathogens number
4
number years
4
years sirtuin
4
sirtuin enzymes
4

Similar Publications

The role of miR-155 in cardiovascular diseases: Potential diagnostic and therapeutic targets.

Int J Cardiol Cardiovasc Risk Prev

March 2025

Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.

Cardiovascular diseases (CVDs), such as atherosclerotic cardiovascular diseases, heart failure (HF), and acute coronary syndrome, represent a significant threat to global health and impose considerable socioeconomic burdens. The intricate pathogenesis of CVD involves various regulatory mechanisms, among which microRNAs (miRNAs) have emerged as critical posttranscriptional regulators. In particular, miR-155 has demonstrated differential expression patterns across a spectrum of CVD and is implicated in the etiology and progression of arterial disorders.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have attracted significant interest in recent years owing to their unique physicochemical properties, including antimicrobial reduction capabilities, photocatalytic activity, self-cleaning features, superhydrophobicity, and electrical conductivity. Their characteristics render them highly advantageous for various textile, electronics, food and agriculture, water treatment, and biomedical applications. This detailed analysis explores the recent benefits and drawbacks of various synthesis methods, immobilization techniques, and characterization of AgNPs while emphasizing novel strategies that improve their functionality across different substrates.

View Article and Find Full Text PDF

Novel Insights from Comprehensive Bioinformatics Analysis Utilizing Large-Scale Human Transcriptomes and Experimental Validation: The Role of Autophagy in Periodontitis.

J Inflamm Res

December 2024

School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People's Republic of China.

Objective: Autophagy plays a crucial role in the pathophysiology of periodontitis, yet its precise involvement in the disease process remains elusive. The aim of the present study was thus to investigate the involvement of autophagy in the pathology of periodontitis. This investigation involved transcriptomic analysis of a broad range of human samples and complemented by in vitro experimentation.

View Article and Find Full Text PDF

Phytoestrogens are plant-derived compounds resembling human estrogen and have recently gained attention due to their potential role in improving cardiovascular health. These compounds exert their effects through various mechanisms, including interactions with estrogen receptors, growth factor receptors, inflammatory mediators, thrombogenic reactions, and apoptotic pathways. This results in cardioprotective effects like modulating endothelial function, decreasing vessel tone, reducing inflammation, altering lipid profiles, and influencing arrhythmogenesis.

View Article and Find Full Text PDF

Unlabelled:

Introduction: Alzheimer's disease (AD) represents the most common neurodegenerative disorder, characterized by progressive cognitive decline and memory loss. Despite the recognition of mitochondrial dysfunction as a critical factor in the pathogenesis of AD, the specific molecular mechanisms remain largely undefined.

Method: This study aimed to identify novel biomarkers and therapeutic strategies associated with mitochondrial dysfunction in AD by employing bioinformatics combined with machine learning methodologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!