Two series of samples collected for isolation of dictyostelid cellular slime molds (dictyostelids) in Madagascar yielded a relatively large number of isolates of Polysphondylium. Most of these turned out to be species new to science that show varying degrees of clustering from unclustered to coremiform as well as an ability to migrate. Migratory ability (phototaxis) is a common feature of species assigned to Group 2 of the Polysphondylia and is common in the new species from Madagascar. Another common feature, clustering, appears to be a strategy for keeping fruiting bodies erect for a longer time in a climate that is relatively dry, whereas migratory ability may function seasonally when there is more rainfall. Thirteen species are described herein. Each of these is characterized by a particular set of distinguishing features, and collectively they expand our concept of the genus Polysphondylium.

Download full-text PDF

Source
http://dx.doi.org/10.3852/14-313DOI Listing

Publication Analysis

Top Keywords

migratory ability
8
common feature
8
species
5
species polysphondylium
4
polysphondylium madagascar
4
madagascar series
4
series samples
4
samples collected
4
collected isolation
4
isolation dictyostelid
4

Similar Publications

[Nutrition-obesity. New therapeutic education programme for migrant and allophone people living with obesity].

Rev Med Suisse

January 2025

Unité d'éducation thérapeutique du patient, Centre collaborateur OMS, Service de médecine de premier recours, Département de médecine de premier recours, Hôpitaux universitaires de Genève, 1211 Genève 14.

Migrant and allophone people often face linguistic, cultural and structural barriers, with limited access to healthcare. To address this issue, the Therapeutic Patient Education Unit has created at the University Hospitals of Geneva a new therapeutic programme specifically for these people living with obesity. It includes educational workshops tailored to their language skills, health literacy and migratory background.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Proteomic Characterization of NEDD4 Unveils Its Potential Novel Downstream Effectors in Gastric Cancer.

J Proteome Res

January 2025

Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.

The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated 4 (NEDD4) is involved in various cancer signaling pathways, including PTEN/AKT. However, its role in promoting gastric cancer (GC) progression is unclear. This study was conducted to elucidate the role of NEDD4 in GC progression.

View Article and Find Full Text PDF

In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!