The β2-α2 loop of PrP(C) is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrP(C) appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2-α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that 'rigidity' in the β2-α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614821PMC
http://dx.doi.org/10.1038/srep15528DOI Listing

Publication Analysis

Top Keywords

β2-α2 loop
16
prion protein
12
complex folding
8
folding misfolding
8
amino acid
8
protein
8
protein misfolding
8
protein stability
8
misfolding
7
loop
5

Similar Publications

The tick-borne encephalitis virus is a pathogen endemic to northern Europe and Asia, transmitted through bites from infected ticks. It is a member of the family and possesses a positive-sense, single-stranded RNA genome encoding a polypeptide that is processed into seven non-structural and three structural proteins, including the envelope (E) protein. The glycosylation of the E protein, involving a single N-linked glycan at position N154, plays a critical role in viral infectivity and pathogenesis.

View Article and Find Full Text PDF

Ultra-High Sensitivity Methane Gas Sensor Based on Cryptophane-A Thin Film Depositing in Double D-Shaped Photonic Crystal Fiber Using the Vernier Effect.

Sensors (Basel)

December 2024

State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.

Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content in the gas. The optical fiber structure of the effective sensing in the sensing SI loop and the effective sensing in the reference SI loop are the same.

View Article and Find Full Text PDF

Conventional floating bridge systems used during emergency repairs, such as during wartime or after natural disasters, typically rely on passive rubber bearings or semi-active control systems. These methods often limit traffic speed, stability, and safety under dynamic conditions, including varying vehicle loads and fluctuating water levels. To address these challenges, this study proposes a novel Hydraulic Self-Adaptive Bearing System (HABS).

View Article and Find Full Text PDF

A 35 nV/√Hz Analog Front-End Circuit with Adjustable Bandwidth and Gain in UMC 40 nm CMOS for Biopotential Signal Acquisition.

Sensors (Basel)

December 2024

State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.

This paper presents a 35 nV/√Hz analog front-end (AFE) circuitdesigned in the UMC 40 nm CMOS technology for the acquisition of biopotential signal. The proposed AFE consists of a capacitive-coupled instrumentation amplifier (CCIA) and a combination of a programmable gain amplifier (PGA) and a low-pass filter (LPF). The CCIA includes a DC servo loop (DSL) to eliminate electrode DC offset (EDO) and a ripple rejection loop (RRL) with self-zeroing technology to suppress high-frequency ripples caused by the chopper.

View Article and Find Full Text PDF

Realisation of an Application Specific Multispectral Snapshot-Imaging System Based on Multi-Aperture-Technology and Multispectral Machine Learning Loops.

Sensors (Basel)

December 2024

Group of Quality Assurance and Industrial Image Processing, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Gustav-Kirchhoff-Platz 2, 98693 Ilmenau, Germany.

Multispectral imaging (MSI) enables the acquisition of spatial and spectral image-based information in one process. Spectral scene information can be used to determine the characteristics of materials based on reflection or absorption and thus their material compositions. This work focuses on so-called multi aperture imaging, which enables a simultaneous capture (snapshot) of spectrally selective and spatially resolved scene information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!