There is increasing interest in both the cumulative and long-term impact of early life adversity on brain structure and function, especially as the brain is both highly vulnerable and highly adaptive during childhood. Relationships between SES and neural development have been shown in children older than age 2 years. Less is known regarding the impact of SES on neural development in children before age 2. This paper examines the effect of SES, indexed by income-to-needs (ITN) and maternal education, on cortical gray, deep gray, and white matter volumes in term, healthy, appropriate for gestational age, African-American, female infants. At 5 weeks postnatal age, unsedated infants underwent MRI (3.0T Siemens Verio scanner, 32-channel head coil). Images were segmented based on a locally constructed template. Utilizing hierarchical linear regression, SES effects on MRI volumes were examined. In this cohort of healthy African-American female infants of varying SES, lower SES was associated with smaller cortical gray and deep gray matter volumes. These SES effects on neural outcome at such a young age build on similar studies of older children, suggesting that the biological embedding of adversity may occur very early in development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/desc.12344DOI Listing

Publication Analysis

Top Keywords

neural development
12
ses
8
ses neural
8
development children
8
cortical gray
8
gray deep
8
deep gray
8
matter volumes
8
african-american female
8
female infants
8

Similar Publications

Sexual minority adolescents experience puberty earlier than their heterosexual peers. Early puberty is an indicator of premature aging and can be partly driven by chronic stress linked to discrimination. Nonetheless, the neural, cognitive, and social development linked to puberty enables adolescents to explore and understand their sexual identities.

View Article and Find Full Text PDF

Strategic Inhibition of CHRM Autoantibodies: Molecular Insights and Therapeutic Potentials in Long COVID.

J Med Chem

January 2025

Research and Development, Health-Shield, Vedicinals-9, 40764 Langenfeld, Germany.

In addition to the conventional symptoms reported for COVID-19, it is becoming increasingly clear that patients with long COVID are exhibiting new symptoms due to the emergence of autoantibodies against G-protein-coupled receptors, among which human muscarinic cholinergic receptors (CHRMs) have been prominently reported. With a chronic condition such as long COVID, additional symptoms caused by anti-CHRM autoantibodies (AAbs) have proven to be an added burden on these patients. The origins of these AAbs, their interactions with, and effects on the function of neural and non-neural cells within the nervous system have remained unknown.

View Article and Find Full Text PDF

Comparative Analysis of Recurrent Neural Networks with Conjoint Fingerprints for Skin Corrosion Prediction.

J Chem Inf Model

January 2025

Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Skin corrosion assessment is an essential toxicity end point that addresses safety concerns for topical dosage forms and cosmetic products. Previously, skin corrosion assessments required animal testing; however, differences in skin architecture and ethical concerns regarding animal models have fostered the advancement of alternative methods such as and models. This study aimed to develop deep learning (DL) models based on recurrent neural networks (RNNs) for classifying skin corrosion of chemical compounds based on chemical language notation, molecular substructure, physicochemical properties, and a combination of these three properties called conjoint fingerprints.

View Article and Find Full Text PDF

The amount of information contained in speech signals is a fundamental concern of speech-based technologies and is particularly relevant in speech perception. Measuring the mutual information of actual speech signals is non-trivial, and quantitative measurements have not been extensively conducted to date. Recent advancements in machine learning have made it possible to directly measure mutual information using data.

View Article and Find Full Text PDF

Recent Insights Into Wnt-Related tRNA-Derived Fragments (tRFs) in Human Diseases.

J Cell Biochem

January 2025

Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.

tRNA-derived fragments (tRFs) are a newly recognized class of small noncoding RNAs (sncRNAs) that play significant roles in various diseases. The Wnt pathway plays a key role in various physiological processes such as embryonic development, tissue renewal and regeneration. In the regulation of Wnt/β-catenin, Forkhead box k1(FOXK1), Frizzled class receptor 3 (FZD3), and Wnt5b can be targeted and inhibited by three tRFs: tRF3008A targets FOXK1 to inhibit colorectal cancer (CRC), 5'-tiRNAVal targets FZD3 to inhibit breast cancer (BrC), and tRF-22-8BWS7K092 targets Wnt5b to induce ferroptosis in lung cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!