Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main driver of toxicity was found to be the percentage of surface content of Ce(3+) sites: CNP1 (58%) and CNP5 (40%) were found to be toxic whereas CNP2 (28%), CNP3 (36%) and CNP4 (26%) were found to be non-toxic. The colloidal stability and redox chemistry of the most and least toxic CNPs, CNP1 and CNP2, respectively, were modified by incubation with iron and phosphate buffers. Blocking surface Ce(3+) sites of the most toxic CNP, CNP1, with phosphate treatment reverted toxicity and stimulated growth. Colloidal destabilization with Fe treatment only increased toxicity of CNP1. The results of this study are relevant in the understanding of the main drivers of biological activity of nanoceria and to define global descriptors of engineered nanoparticles (ENPs) bioactivity which may be useful in safer-by-design strategies of nanomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615008 | PMC |
http://dx.doi.org/10.1038/srep15613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!