Ultrafast excited-state deactivation dynamics of small cytosine (Cy) and 1-methylcytosine (1mCy) microhydrates, Cy⋅(H2O)1-3 and 1mCy⋅(H2O)1,2, produced in a supersonic expansion have been studied by mass-selected femtosecond pump-probe photoionization spectroscopy at about 267 nm excitation. The seeded supersonic expansion of Ar/H2O gas mixtures allowed an extensive structural relaxation of Cy and 1mCy microhydrates to low-energy isomers. With the aid of electronic structure calculations, we assigned the observed ultrafast dynamics to the dominant microhydrate isomers of the amino-keto tautomer of Cy and 1mCy. Excited-state lifetimes of Cy⋅(H2O)1-3 measured here are 0.2-0.5 ps. Comparisons of the Cy⋅H2O and 1mCy⋅H2O transients suggest that monohydration at the amino Watson-Crick site induces a substantially stronger effect than at the sugar-edge site in accelerating excited-state deactivation of Cy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201507524DOI Listing

Publication Analysis

Top Keywords

excited-state deactivation
8
1mcy microhydrates
8
supersonic expansion
8
microhydration effects
4
effects ultrafast
4
ultrafast photodynamics
4
photodynamics cytosine
4
cytosine evidences
4
evidences hydration-site
4
hydration-site dependence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!