Platinum-oxide nanoparticles were prepared through the radio-frequency (RF) discharge sputtering of a Pt electrode in an oxygen atmosphere. The structure, particles size, electronic properties, and surface composition of the RF-sputtered particles were studied by using transmission electron microscopy and X-ray photoelectron spectroscopy. The application of the RF discharge method resulted in the formation of highly oxidized Pt(4+) species that were stable under ultrahigh vacuum conditions up to 100 °C, indicating the capability of Pt(4+) -O species to play an important role in the oxidation catalysis under real conditions. The thermal stability and reaction probability of Pt(4+) oxide species were analyzed and compared with those of Pt(2+) species. The reaction probability of PtO2 nanoparticles at 90 °C was found to be about ten times higher than that of PtO-like structures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201500546DOI Listing

Publication Analysis

Top Keywords

reaction probability
12
highly oxidized
8
nanoparticles prepared
8
prepared radio-frequency
8
thermal stability
8
stability reaction
8
pt4+ species
8
oxidized platinum
4
platinum nanoparticles
4
radio-frequency sputtering
4

Similar Publications

Background And Purpose: Numerous studies have demonstrated the effectiveness of Chinese medicine injections (CMIs) in treating diabetic lower extremity arterial disease (Dia-LEAD). However, with the variety of CMIs available, it has become challenging to determine the optimal choice for Dia-LEAD patients. This study aims to compare and rank the efficacy of CMIs for Dia-LEAD to provide references and evidence for clinicians in optimising drug selection.

View Article and Find Full Text PDF

Importance: There is a lack of long-term efficacy and safety data on hereditary transthyretin amyloidosis with polyneuropathy (hATTR-PN) and on RNA interference (RNAi) therapeutics in general. This study presents the longest-term data to date on patisiran for hATTR-PN.

Objective: To present the long-term efficacy and safety of patisiran in adults with hATTR-PN.

View Article and Find Full Text PDF

Pyoderma gangrenosum (PG) is a rare neutrophilic dermatosis characterized by pustules that rapidly progress into ulcers that commonly affect the lower limbs. Recently, successful treatment of PG has been reported with anti-IL 17 treatments. However, there have also been several reports of "paradoxical" induction of new PG lesions after use of IL-17 inhibitors.

View Article and Find Full Text PDF

Erlotinib-induced Perioral Lesions Resembling Scleroderma.

Acta Dermatovenerol Croat

November 2024

Constantin A. Dasanu MD, PhD, Lucy Curci Cancer Center, Eisenhower Health, 39000 Bob Hope Dr, Rancho Mirage, CA 92270 , USA;

Erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is currently used in the therapy of several solid malignancies. This agent has been associated with several dermatological side-effects, the most common being papulo-pustular acneiform rash. Herein we describe a unique skin effect in a patient treated with erlotinib for non-small cell lung cancer.

View Article and Find Full Text PDF

Objective: This paper aims to evaluate the disparities in efficacy and safety across various oral Chinese patent medicines for the treatment of benign prostatic hyperplasia (BPH), using a frequency-based reticulated meta-analysis.

Methods: The researchers searched the following databases: Web of Science, PubMed, Excerpta Medical Database (Embase), Cochrane Library, China Knowledge Network (CNKI), China Biomedical Literature Service System (SinoMed), Wanfang Data Knowledge Service Platform and China Science and Technology Periodicals Database (VIP). Besides, the researchers collected all randomized controlled trials (RCTs) of oral Chinese patent medicines, as well as simple preparations and simple preparations for benign prostatic hyperplasia from the establishment of the database until July1, 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!