Disorder-to-Order Transition of an Active-Site Loop Mediates the Allosteric Activation of Sortase A.

Biophys J

Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida. Electronic address:

Published: October 2015

Intrinsically disordered proteins and intrinsically disordered regions are implicated in many biological functions and associated with many diseases, but their conformational characterizations are challenging. The disordered β6/β7 loop of Staphylococcus aureus sortase A is involved in the binding of both sorting signals and calcium. Calcium binding allosterically activates the enzyme, but the detailed mechanism has been unclear. Here we adapted the replica exchange with solute tempering method to sample the conformations of the β6/β7 loop, in apo form and in three liganded forms (bound with a sorting signal or calcium or both). The extensive molecular dynamics simulations yield atomic details of the disordered-to-order transition of the loop and suggest a mechanism for allosteric activation: calcium binding results in partial closure and ordering of the loop, thereby leading to preorganization of the binding pocket for the sorting signal. The approach has general applicability to the study of intrinsically disordered regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624160PMC
http://dx.doi.org/10.1016/j.bpj.2015.08.039DOI Listing

Publication Analysis

Top Keywords

intrinsically disordered
12
allosteric activation
8
disordered regions
8
β6/β7 loop
8
calcium binding
8
sorting signal
8
loop
5
disorder-to-order transition
4
transition active-site
4
active-site loop
4

Similar Publications

Intrinsically disordered proteins and protein regions are central to many biological processes but difficult to characterize at atomic resolution. Nuclear magnetic resonance is particularly well-suited for providing structural and dynamical information on intrinsically disordered proteins, but existing NMR methodologies need to be constantly refined to provide greater sensitivity and resolution, particularly to capitalise on the potential of high magnetic fields to investigate large proteins. In this paper, we describe how N-detected 2D NMR experiments can be optimised for better performance.

View Article and Find Full Text PDF

Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species.

View Article and Find Full Text PDF

The Drosophila intrinsically disordered protein Ultrabithorax (Ubx) undergoes a series of phase transitions, beginning with noncovalent interactions between apparently randomly organized monomers, and evolving over time to form increasingly ordered coacervates. This assembly process ends when specific dityrosine covalent bonds lock the monomers in place, forming macroscale materials. Inspired by this hierarchical, multistep assembly process, we analyzed the impact of protein concentration, assembly time, and subphase composition on the early, noncovalent stages of Ubx assembly, which are extremely sensitive to their environment.

View Article and Find Full Text PDF

Cdc25C undergoes a sudden and substantial gel mobility shift at M-phase onset, correlating with abrupt activation of both Cdc25C and Cdk1 activities. A positive feedback loop between Cdk1 and Cdc25C has been used to explain this hallmark phenomenon. Here, we demonstrate that the M-phase supershift and robust activation of Cdc25C are due to the site-comprehensive phosphorylation of its long intrinsically disordered regulatory domain without requiring Cdk1 or other major mitotic kinase activities.

View Article and Find Full Text PDF

Invariance of the speckle pattern of the transmitted wave in periodic waveguides.

Sci Rep

January 2025

Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans, France.

We report on conditions of invariance of the transmitted pattern in the propagation through a periodic waveguide, the incident wave having no effect on the intensity pattern of the transmitted field. This phenomenon is reminiscent of that observed when illuminating a disordered medium in the regime of Anderson localization, as a consequence of the contribution of a single transmission eigenchannel to the transmitted wave. It is shown that the freezing of the transmitted wave is not intrinsically related to the disorder and that, whatever the frequency, it can also be observed in a regular, periodic system, provided that at most one Bloch mode is propagating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!