The ability to adaptively shift between exploration and exploitation control states is critical for optimizing behavioral performance. Converging evidence from primate electrophysiology and computational neural modeling has suggested that this ability may be mediated by the broad norepinephrine projections emanating from the locus coeruleus (LC) [Aston-Jones, G., & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403-450, 2005]. There is also evidence that pupil diameter covaries systematically with LC activity. Although imperfect and indirect, this link makes pupillometry a useful tool for studying the locus coeruleus norepinephrine system in humans and in high-level tasks. Here, we present a novel paradigm that examines how the pupillary response during exploration and exploitation covaries with individual differences in fluid intelligence during analogical reasoning on Raven's Advanced Progressive Matrices. Pupillometry was used as a noninvasive proxy for LC activity, and concurrent think-aloud verbal protocols were used to identify exploratory and exploitative solution periods. This novel combination of pupillometry and verbal protocols from 40 participants revealed a decrease in pupil diameter during exploitation and an increase during exploration. The temporal dynamics of the pupillary response was characterized by a steep increase during the transition to exploratory periods, sustained dilation for many seconds afterward, and followed by gradual return to baseline. Moreover, the individual differences in the relative magnitude of pupillary dilation accounted for 16% of the variance in Advanced Progressive Matrices scores. Assuming that pupil diameter is a valid index of LC activity, these results establish promising preliminary connections between the literature on locus coeruleus norepinephrine-mediated cognitive control and the literature on analogical reasoning and fluid intelligence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/jocn_a_00895 | DOI Listing |
Neurophotonics
January 2025
Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States.
Significance: Functional brain imaging experiments in awake animals require meticulous monitoring of animal behavior to screen for spontaneous behavioral events. Although these events occur naturally, they can alter cell signaling and hemodynamic activity in the brain and confound functional brain imaging measurements.
Aim: We developed a centralized, user-friendly, and stand-alone platform that includes an animal fixation frame, compact peripheral sensors, and a portable data acquisition system.
Clin Exp Optom
January 2025
Department of Ophthalmology, Gaziantep City Hospital, Gaziantep, Turkey.
Clinical Relevance: Although laser refractive surgeries and multifocal intraocular lens implantation are generally avoided in patients with diabetic retinopathy, a substantial proportion of well-glycaemic-controlled type 2 diabetes mellitus patients are considered for these procedures. Pupil dynamics play a significant role in determining postoperative satisfaction in these patients.
Background: To evaluate pupillary dynamics in patients with and without diabetes following uneventful phacoemulsification surgery.
Life (Basel)
January 2025
University Clinical Centre named after Prof. K. Gibiński, Medical University of Silesia, 40-514 Katowice, Poland.
Background: This study aimed to evaluate mydriasis stability during cataract surgery in patients with systemic comorbidities such as diabetes mellitus (DM) and pseudoexfoliation syndrome (PXF) after a standardised combination of intracameral mydriatics and anaesthetic (SCIMA). Stable mydriasis is crucial for safe and effective phacoemulsification.
Methods: Patients were included if they achieved pupil dilation ≥6.
Life (Basel)
January 2025
Department of Rehabilitation Sciences, Florida Gulf Coast University, Fort Myers, FL 33965, USA.
Background: High-velocity, low-amplitude (HVLA) manipulation is a common manual therapy technique used for treating pain and musculoskeletal dysfunction. An audible manipulation sound is commonly experienced by patients who undergo HVLA manipulation; however, there is little known about the effects and clinical relevance of the audible manipulation sound on cortical output and the autonomic nervous system. This study aimed to identify the immediate impact of the audible manipulation sound on brainwave activity and pupil diameter in asymptomatic subjects following an HVLA cervical manipulation.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China.
The tendency toward the aesthetic preference affects an individual's intention to purchase furniture. Color and form are two fundamental elements of furniture appearance. However, there is a significant lack of human-computer interaction research on the aesthetic evaluation of furniture with various colors and forms, necessitating a comprehensive study to provide theoretical and empirical support to furniture designers and businesses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!