The dehydrogenation of 1-(4-hydroxyphenyl)-ethanol to 4-hydroxyacetophenone represents the second reaction step during anaerobic degradation of p-ethylphenol in the denitrifying bacterium 'Aromatoleum aromaticum' EbN1. Previous proteogenomic studies identified two different proteins (ChnA and EbA309) as possible candidates for catalyzing this reaction [Wöhlbrand et al: J Bacteriol 2008;190:5699-5709]. Physiological-molecular characterization of newly generated unmarked in-frame deletion and complementation mutants allowed defining ChnA (renamed here as Hped) as the enzyme responsible for 1-(4-hydroxyphenyl)-ethanol oxidation. Hped [1-(4-hydroxyphenyl)-ethanol dehydrogenase] belongs to the 'classical' family within the short-chain alcohol dehydrogenase/reductase (SDR) superfamily. Hped was overproduced in Escherichia coli, purified and crystallized. The X-ray structures of the apo- and NAD(+)-soaked form were resolved at 1.5 and 1.1 Å, respectively, and revealed Hped as a typical homotetrameric SDR. Modeling of the substrate 4-hydroxyacetophenone (reductive direction of Hped) into the active site revealed the structural determinants of the strict (R)-specificity of Hped (Phe(187)), contrasting the (S)-specificity of previously reported 1-phenylethanol dehydrogenase (Ped; Tyr(93)) from strain EbN1 [Höffken et al: Biochemistry 2006;45:82-93].

Download full-text PDF

Source
http://dx.doi.org/10.1159/000439113DOI Listing

Publication Analysis

Top Keywords

'aromatoleum aromaticum'
8
aromaticum' ebn1
8
hped
6
molecular genetic
4
genetic crystal
4
crystal structural
4
structural analysis
4
analysis 1-4-hydroxyphenyl-ethanol
4
1-4-hydroxyphenyl-ethanol dehydrogenase
4
dehydrogenase 'aromatoleum
4

Similar Publications

Lithocarpus litseifolius is rich in the chalcones phloridzin and trilobatin, the biosynthesis pathways of which have not been fully demonstrated. Chalcone synthase(CHS) is the first key rate-limiting enzyme in the biosynthesis of flavonoids in plants. To explore the functions of CHS gene family in chalcone synthesis of L.

View Article and Find Full Text PDF

Toluene is a pollutant frequently detected in contaminated groundwater, mostly due to leakage from underground gasoline storage tanks and pipeline ruptures. Multi-element compound-specific isotope analysis provides a framework to understand transformation processes and design efficient remediation strategies. In this study, we enriched an anaerobic bacterial culture derived from a BTEX-contaminated aquifer that couples toluene and phenol oxidation with nitrate reduction and the concomitant production of carbon dioxide and biomass.

View Article and Find Full Text PDF

Catalytic Stability of -1-(4-Hydroxyphenyl)-Ethanol Dehydrogenase from .

Int J Mol Sci

July 2024

Institute of Chemical and Environmental Engineering, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia.

Derived from the denitrifying bacterium EbN1 ( sp.), the enzyme -1-(4-hydroxyphenyl)-ethanol dehydrogenase (S-HPED) belongs to the short-chain dehydrogenase/reductase family. Using research techniques like UV-Vis spectroscopy, dynamic light scattering, thermal-shift assay and HPLC, we investigated the catalytic and structural stability of S-HPED over a wide temperature range and within the pH range of 5.

View Article and Find Full Text PDF

We characterise a reversible bacterial zinc-containing benzyl alcohol dehydrogenase (BaDH) accepting either NAD or NADP as a redox cofactor. Remarkably, its redox cofactor specificity is pH-dependent with the phosphorylated cofactors favored at lower and the dephospho-forms at higher pH. BaDH also shows different steady-state kinetic behavior with the two cofactor forms.

View Article and Find Full Text PDF

Acetone carboxylases (ACs) catalyze the metal- and ATP-dependent conversion of acetone and bicarbonate to form acetoacetate. Interestingly, two homologous ACs that have been biochemically characterized have been reported to have different metal complements, implicating different metal dependencies in catalysis. ACs from proteobacteria and share 68% sequence identity but have been proposed to have different catalytic metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!