A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material. | LitMetric

Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material.

Dalton Trans

Energetic Materials Research Division, High Energy Materials Research Laboratory (Defence Research & Development Organization), Pune, 411 021, India.

Published: November 2015

Unlabelled: An ecofriendly procedure for the synthesis of graphene-titanium dioxide nanocomposites (GTNC) has been developed by dispersing nano-titanium dioxide (TiO2) and graphene nanosheets (GNSs) in ethanol via ultrasonication followed by microwave irradiation. Such nanohybrids were characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. We have also demonstrated the synthesis of highly conductive composites like poly(3,4-ethylenedioxythiophene)polystyrene sulphonate (

Pedot: PSS)-GTNC, polyvinyl acetate (PVAc)-GTNC, PEDOT:PSS-graphene, and PVAc-graphene by ultrasonication followed by hot compaction towards their thermoelectric application. The filler (graphene, GTNC) concentration and polymer matrix were judiciously varied and optimized for the sake of high electrical conductivity and Seebeck coefficient which leads to a higher power factor (PF). The PVAc based composite with a composition of PVAc (20%) and GTNC (80%) was found to be the most promising material with an electrical conductivity of 2.6 × 10(4) S m(-1) and a Seebeck coefficient of -42 μV K(-1) at room temperature (RT). As a result, the PF reaches 47 μW m(-1) K(-2) at RT which is approximately 37 times, 5 times and 3 times higher than that for the PVAc-graphene based composite, the

Pedot: PSS-GTNC based composite and the

Pedot: PSS-graphene based composite respectively. The origin of the thermoelectric performance of the GTNC composite seems to be from the synergistic effect of graphene nanosheets and TiO2 nanoparticles. The composite shows a large power factor value without using any conducting polymer.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5dt02877aDOI Listing

Publication Analysis

Top Keywords

based composite
16
graphene nanosheets
8
electrical conductivity
8
seebeck coefficient
8
power factor
8
times times
8
composite thepedot
8
composite
6
gtnc
5
polymer based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!