Stabilization of Al(III) solutions by complexation with cacodylic acid: speciation and binding features.

Phys Chem Chem Phys

Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain. begar

Published: November 2015

Aluminium ions are believed to play a role in a number of neurological and skeletal disorders in the human body. The study of the biological processes and molecular mechanisms that underlie these pathological disorders is rendered a difficult task due to the wide variety of complex species that result from the hydrolysis of Al(3+) ions. In addition, this ion displays a pronounced tendency to precipitate as a hydroxide, so certain complexing agents should be envisaged to stabilize Al(III) solutions in near physiological conditions. In this work, we show that the common buffer cacodylic acid (dimethylarsinic acid, HCac) interacts with Al(III) to give stable complexes, even at pH 7. After preliminary analyses of the speciation of the metal ion and also of the ligand, a systematic study of the formation of different Al/Cac complexes at different pH values has been conducted. UV-Vis titrations, mass spectrometry NMR measurements and DTF calculations were performed to enlighten the details of the speciation and stoichiometry of Al/Cac complexes. The results altogether show that Al/Cac dimer complexes prevail, but monomer and trimer forms are also present. Interestingly, it was found that cacodylate promotes the formation of such relatively simple complexes, even under conditions where the polymeric form, Al13O4(OH)24(7+), should predominate. The results obtained can help to shed some light into the reactivity of aluminium ions in biological environments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp04717jDOI Listing

Publication Analysis

Top Keywords

aliii solutions
8
cacodylic acid
8
aluminium ions
8
al/cac complexes
8
complexes
5
stabilization aliii
4
solutions complexation
4
complexation cacodylic
4
acid speciation
4
speciation binding
4

Similar Publications

Rational design of 1, 2, 4, 5-tetraphenyl-1H-imidazole-based AIEgens with tunable intramolecular charge transfer and restricted intramolecular rotation processes for multifunctional sensing.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China. Electronic address:

Aggregation-induced emission fluorogens (AIEgens) with intramolecular charge transfer (ICT) characteristic are widely used in the detection of various analytes owing to their highly tunable fluorescence emission properties. However, facilely synthesis of AIEgens with ICT characteristic for multiple sensing is still rare and limited in use. In this work, two new AIEgens of 1,2-bis(4-alkoxycarbonylphenyl)-4,5-bis(4-methoxyphenyl)-1H-imidazole (AMI) and its hydrolyzed derivative 1,2-bis(4-carboxylphenyl)-4,5-bis(4-methoxyphenyl)-1H-imidazole (CMI) were facilely synthesized with donor-π-acceptor (D-π-A) structures.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the interactions and hydration characteristics of hydrated trivalent metal nitrate salts (Fe(NO3)·9H2O and Al(NO3)·9H2O) using advanced spectroscopic techniques like Raman and sum frequency generation (SFG) spectroscopy across various frequency ranges.
  • Key findings include the effects of Lewis acidity of the metal ions on the spectral properties, specifically how it impacts the splitting and frequency shifts of nitrate bands, as well as highlighting unique solvation environments in solution.
  • Interestingly, aluminum nitrate disrupts surface water structure more significantly than iron nitrate, despite aluminum being a weaker Lewis acid, suggesting that aluminum's unique properties lead to more pronounced surface solvation effects.
View Article and Find Full Text PDF

Exploration of new heterobinuclear Al/M combinations is relevant to contemporary strategies for cooperative bond activation. Here, we report the synthesis and characterization of six new Al/M heterobimetallic complexes (M = Cr, Mo, W) that exhibit end-on "isocarbonyl"-type Al─O═C═M bridges with metalloketene character rather than featuring Al─M─C≡O motifs with metal-metal bonding. The new compounds were characterized experimentally by nuclear magnetic resonance and infrared spectroscopies and theoretically using density functional theory, natural bond orbital, and quantum theory of atoms in molecules calculations.

View Article and Find Full Text PDF

Acid-base dissociable antibiotic-metal complexes are known to be emerging contaminants in the aquatic environments. However, little information is available on the photochemical properties and toxicity of these complex forms. This study investigated the spectral properties of three fluoroquinolones (FQs) with and without metal ions Fe(III), Cu(II), and Al(III) in solutions under different pH conditions, as well as evaluated the changes in toxicity due to the complex with these metal ions using luminescent bacteria (vibrio fischeri).

View Article and Find Full Text PDF

The selective and sensitive detection of Al(III) is critically important for human health since the level of Al(III) is an indicator of many diseases in humans. Herein, we developed a simple and sensitive fluorescent sensor for the detection of Al(III) in an aqueous solution based on the fluorescence of hydroxyl-functionalized graphitic carbon nitride nanosheets (HO/g-CN). OH/g-CN nanosheets were synthesized the thermal pyrolysis of 1,3,5-triazine-2,4,6-triamine (as raw material) at 550 °C for 2 hours, followed by thermal alkali treatment at 730 °C for 2 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!