Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that modulates cortical excitability and influences motor behavior. There is limited information available regarding the effects of anodal tDCS on lower limb reaction time. In this study, we aimed to investigate the effects of anodal tDCS on lower limb simple reaction time (SRT) and choice reaction time (CRT). We probed this question further by examining the effects of anodal tDCS of the lower limb M1 on an upper limb RT task and a cognitive measure. Fourteen healthy young adults received anodal tDCS and sham tDCS to the lower limb M1 on two separate testing days in a counterbalanced order. After stimulation, we assessed the effects of tDCS on ankle dorsiflexion SRT and CRT, ankle plantarflexion SRT and CRT, wrist extension SRT and CRT and the symbol digit modality test (SDMT). Anodal tDCS significantly improved response times from baseline for ankle CRT but not for ankle SRT or wrist SRT or CRT. A significant decrement (i.e., longer response time) was noted for the sham tDCS conditions. There was a significant difference between anodal and sham conditions for all RT tasks, suggesting that anodal tDCS improved RT compared to sham. No change in SDMT scores was observed for both conditions. Anodal tDCS appeared to differentially modulate ankle SRT and CRT, suggesting an influence of anodal tDCS on complex motor processes and/or the supplementary motor area. Absence of effects on wrist CRT or SDMT suggests a spatial specificity of the influence of tDCS. Anodal tDCS also appears to potentially negate the effects of fatigue or task switching that was detrimental to RT in the sham condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015891 | PMC |
http://dx.doi.org/10.1007/s00221-015-4470-y | DOI Listing |
Medicina (Kaunas)
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
Stroke remains a leading cause of global disability and mortality despite advancements in acute interventions. Transcranial direct current stimulation (tDCS), a non-invasive neuromodulation technique, has primarily been studied for its effects on cortical excitability, with limited exploration of its neuroprotective and hemodynamic benefits. This review examines the role of tDCS in stroke, with a focus on neuroprotection in acute settings and cerebral blood flow (CBF) modulation in both acute and chronic phases.
View Article and Find Full Text PDFJ Clin Med
December 2024
Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, 45004 Toledo, Spain.
Multiple Sclerosis (MS) is a chronic neurological condition that impairs motor and sensory functions, particularly gait. Non-invasive neuromodulation techniques aim to enhance functional recovery and motor-cognitive outcomes, though their effectiveness remains debated. This study compared the effects of transcranial direct current stimulation (tDCS) and trans-spinal direct current stimulation (tsDCS), combined with robotic-assisted gait training (RAGT), on motor function and fatigue in people with MS (pwMS).
View Article and Find Full Text PDFTrials
January 2025
Department of Neurology, Universitätsmedizin Greifswald, Fleischmannstraße 6, Greifswald, 17489, Germany.
Background: Postoperative delirium (POD) is the most common neurological adverse event among elderly patients undergoing surgery. POD is associated with an increased risk for postoperative complications, long-term cognitive decline, an increase in morbidity and mortality as well as extended hospital stays. Delirium prevention and treatment options are currently limited.
View Article and Find Full Text PDFIndividuals with general anxiety disorder (GAD) have an impaired future-oriented processing and altered reward perception, which might involve the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC). Twenty-nine adults with GAD performed the balloon analogue risk-taking task (BART) and delay discounting task (DDT) during five sessions of transcranial direct current stimulation (tDCS) with different stimulation conditions. The stimulation conditions were: anodal dlPFC (F3)/cathodal vmPFC (Fp2), anodal vmPFC (Fp2)/cathodal dlPFC (F3), anodal dlPFC (F3)/cathodal right shoulder, anodal vmPFC (Fp2)/cathodal left shoulder, and sham stimulation.
View Article and Find Full Text PDFPLoS One
December 2024
Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium.
Transcranial direct current stimulation (tDCS) has the potential to modulate spatial attention by enhancing the activity in one hemisphere relative to the other. This study aims to inform neurorehabilitation strategies for spatial attention disorders by investigating the impact of tDCS on the performance of healthy participants. Unlike prior research that focused on visual detection, we extended the investigation to visual search and visual imagery using computerized neuropsychological tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!