The ω6 and ω3 pathways are two major pathways in the biosynthesis of PUFAs. In both of these, delta 6 desaturase (FADS6) is a key bifunctional enzyme desaturating linoleic acid or α-linolenic acid. Microbial species have different propensity for accumulating ω6- or ω3-series PUFAs, which may be determined by the substrate preference of FADS6 enzyme. In the present study, we analyzed the molecular mechanism of FADS6 substrate specificity. FADS6 cDNAs were cloned from Mortierella alpina (ATCC 32222) and Micromonas pusilla (CCMP1545) that synthesized high levels of arachidonic acid and EPA, respectively. M. alpina FADS6 (MaFADS6-I) showed substrate preference for LA; whereas, M. pusilla FADS6 (MpFADS6) preferred ALA. To understand the structural basis of substrate specificity, MaFADS6-I and MpFADS6 sequences were divided into five sections and a domain swapping approach was used to examine the role of each section in substrate preference. Our results showed that sequences between the histidine boxes I and II played a pivotal role in substrate preference. Based on our domain swapping results, nine amino acid (aa) residues were targeted for further analysis by site-directed mutagenesis. G194L, E222S, M227K, and V399I/I400E substitutions interfered with substrate recognition, which suggests that the corresponding aa residues play an important role in this process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655987 | PMC |
http://dx.doi.org/10.1194/jlr.M062158 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including . Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase.
View Article and Find Full Text PDFDalton Trans
January 2025
Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12 R5CP, Ireland.
Layered materials, such as tungsten dichalcogenides (TMDs), are being studied for a wide range of applications, due to their unique and varied properties. Specifically, their use as either a support for low dimensional catalysts or as an ultrathin diffusion barrier in semiconductor devices interconnect structures are particularly relevant. In order to fully realise these possible applications for TMDs, understanding the interaction between metals and the monolayer they are deposited on is of utmost importance.
View Article and Find Full Text PDFChembiochem
January 2025
Osaka University: Osaka Daigaku, International Center for Biotechnology, JAPAN.
Bacillibactin (BB) is a microbial siderophore produced by Bacillus species. BB is biosynthesized from 2,3-dihydroxybenzoic acid (2,3-DHB), Gly, and L-Thr by nonribosomal peptide synthetase (NRPS) enzymes DhbE, DhbB, and DhbF. The biosynthetic gene cluster (dhb) is also conserved in some strains of thermophilic genera, Geobacillus, Anoxybacillus and Parageobacillus.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Life Science, Bar Ilan University, Ramat Gan, Israel. Electronic address:
Saccharomyces cerevisiae, a model eukaryotic organism with a rich history in research and industry, has become a pivotal tool for studying Adenosine Deaminase Acting on RNA (ADAR) enzymes despite lacking these enzymes endogenously. This chapter reviews the diverse methodologies harnessed using yeast to elucidate ADAR structure and function, emphasizing its role in advancing our understanding of RNA editing. Initially, Saccharomyces cerevisiae was instrumental in the high-yield purification of ADARs, addressing challenges associated with enzyme stability and activity in other systems.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
Both silicon and carbon are elements located in group 14 on the periodic table. Despite some similarities between these two elements, differences in reactivity are important, and whereas carbon is a central element in all known forms of life, silicon is barely found in biological systems. Here, we investigate the Diels-Alder cycloaddition reaction of cyclopentadiene (CP) and cyclopentasildiene (CP) with fullerenes C, Li@C, Si, and Li@Si using density functional theory methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!