Abnormal mechanosensing and cofilin activation promote the progression of ascending aortic aneurysms in mice.

Sci Signal

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.

Published: October 2015

Smooth muscle cells (SMCs) and the extracellular matrix (ECM) are intimately associated in the aortic wall. Fbln4(SMKO) mice with an SMC-specific deletion of the Fbln4 gene, which encodes the vascular ECM component fibulin-4, develop ascending aortic aneurysms that have increased abundance of angiotensin-converting enzyme (ACE); inhibiting angiotensin II signaling within the first month of life prevents aneurysm development. We used comparative proteomics analysis of Fbln4(SMKO) aortas from postnatal day (P) 1 to P30 mice to identify key molecules involved in aneurysm initiation and expansion. At P14, the actin depolymerizing factor cofilin was dephosphorylated and thus activated, and at P7, the abundance of slingshot-1 (SSH1) phosphatase, an activator of cofilin, was increased, leading to actin cytoskeletal remodeling. Also, by P7, biomechanical changes and underdeveloped elastic lamina-SMC connections were evident, and the abundance of early growth response 1 (Egr1), a mechanosensitive transcription factor that stimulates ACE expression, was increased, which was before the increases in ACE abundance and cofilin activation. Postnatal deletion of Fbln4 in SMCs at P7 prevented cofilin activation and aneurysm formation, suggesting that these processes required disruption of elastic lamina-SMC connections. Phosphoinositide 3-kinase (PI3K) is involved in the angiotensin II-mediated activation of SSH1, and administration of PI3K inhibitors from P7 to P30 decreased SSH1 abundance and prevented aneurysms. These results suggest that aneurysm formation arises from abnormal mechanosensing of SMCs resulting from the loss of elastic lamina-SMC connections and from increased SSH1 and cofilin activity, which may be potential therapeutic targets for treating ascending aortic aneurysms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572214PMC
http://dx.doi.org/10.1126/scisignal.aab3141DOI Listing

Publication Analysis

Top Keywords

cofilin activation
12
ascending aortic
12
aortic aneurysms
12
elastic lamina-smc
12
lamina-smc connections
12
abnormal mechanosensing
8
deletion fbln4
8
aneurysm formation
8
cofilin
6
abundance
5

Similar Publications

Leucine has gained recognition as an athletic dietary supplement in recent years due to its various benefits; however, the underlying molecular mechanisms remain unclear. In this study, 20 basketball players were recruited and randomly assigned to two groups. Baseline exercise performance-assessed through a 282-foot sprint, free throws, three-point field goals, and self-rated practice assessments-was measured prior to leucine supplementation.

View Article and Find Full Text PDF

The Gene Product STIL Is Essential for Dendritic Spine Formation.

Cells

January 2025

Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan.

Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo.

View Article and Find Full Text PDF

12/15-Lipoxygenase-Derived Electrophilic Lipid Modifications in Phagocytic Macrophages.

ACS Chem Biol

January 2025

Division of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-0011, Japan.

Macrophages remove apoptotic cells via phagocytosis, also known as efferocytosis, during inflammation to maintain tissue homeostasis. This process is accompanied by various metabolic changes in macrophages including the production of lipid metabolites by fatty acid oxygenases. Among these, highly reactive metabolites, called lipid-derived electrophiles (LDEs), modify cysteines and other nucleophilic amino acids in intracellular proteins.

View Article and Find Full Text PDF

Involvement of ATF6 in Octreotide-Induced Endothelial Barrier Enhancement.

Pharmaceuticals (Basel)

November 2024

School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.

: Endothelial hyperpermeability is the hallmark of severe disease, including sepsis and acute respiratory syndrome (ARDS). The development of medical countermeasures to treat the corresponding illness is of utmost importance. Synthetic somatostatin analogs (SSA) are FDA-approved drugs prescribed in patients with neuroendocrine tumors, and they act via growth hormone (GH) suppression.

View Article and Find Full Text PDF

Unraveling the protein kinase C/NDRG1 signaling network in breast cancer.

Cell Biosci

December 2024

Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.

N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!