AI Article Synopsis

  • Researchers developed a nanowire field effect transistor for detecting antibodies against avian influenza in real-time and without labeling.
  • The device showed a significant increase in current when anti-AI solutions were applied to it, confirming the presence of these antibodies.
  • This technology demonstrates effective antibody-antigen interaction detection and could be utilized in a chip-based biosensor.

Article Abstract

Real-time and label-free detection of antibodies from avian influenza (anti-AI) in an aqueous solution is demonstrated with the use of a nanowire field effect transistor. A real-time measurement system is constructed without leakage paths through the solution medium. The current through the nanowire changes significantly after an injection of an anti-AI solution onto the device, which was previously functionalized by the antigen of AI as a probe of anti-AI. In contrast, no significant response arises when an anti-AI solution is injected onto a non-functionalized device. Therefore, the real-time detection of specific antibody-antigen interaction of the AI is successfully implemented for a chip-based biosensor.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2015.1501DOI Listing

Publication Analysis

Top Keywords

real-time detection
8
avian influenza
8
nanowire field
8
anti-ai solution
8
label-free real-time
4
detection avian
4
influenza nanowire
4
field transistors
4
transistors real-time
4
real-time label-free
4

Similar Publications

Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.

Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.

View Article and Find Full Text PDF

Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.

View Article and Find Full Text PDF

This study addresses the critical issue of irreversible oxidation in hypochlorite (ClO⁻) sensing by a phenothiazine-based compound, which typically leads to the probe's degradation and loss of functionality. We introduce a novel fluorescence probe, (2-(5-(10 H-phenothiazin-10-yl)thiophen-2-yl)-1 H-benzo[d]imidazol-6-yl)(phenyl)methanone (PTH-BP), specifically designed to enhance ClO⁻ detection efficiency. PTH-BP exhibits strong aggregation-induced emission (AIE), emitting deep orange fluorescence at 620 nm with a large Stokes shift of 195 nm, and achieves an impressive detection limit of 1 nM in ACN/PBS buffer solutions.

View Article and Find Full Text PDF

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.

Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!