99mTc colloid scans, hepatobiliary scans with IDA derivatives, 67Ga scans, and labeled red blood cells or indium-labeled white blood cells are the major imaging procedures that are currently widely available to visualize the liver. The use of labeled antibodies to a specific tumor is being explored as an investigative procedure but is complicated by the high circulating background activity. In this overview of planar liver radionuclide imaging, it was emphasized that these procedures are noninvasive, may be performed at the bedside, are inexpensive, and provide important data for formulating the further investigation of intrahepatic masses, gallbladder disease, vascular and inflammatory diseases. The functional status of the liver is the basis of the radionuclide imaging procedures, and the more accurate anatomic technique do not give these data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2008-1040493 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
Clonal hematopoiesis of indeterminate potential (CHIP) is a condition where blood or bone marrow cells carry mutations associated with hematological malignancies. Individuals with CHIP have an increased risk of developing hematological malignancies, atherosclerotic cardiovascular disease, and all-cause mortality. Bone marrow transplantation (BMT) of cells carrying CHIP mutations into irradiated mice are useful procedures to investigate the dynamics of clonal expansion and potential therapeutic strategies, but myeloablative conditioning can induce confounding effects.
View Article and Find Full Text PDFBMC Cancer
January 2025
Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
Background: Multiple studies have demonstrated that the abundance and functionality of γδ T cells are favorable prognostic indicators for prolonged survival in cancer patients. However, the association between the immunophenotype of circulating γδ T cells and the therapeutic response in NSCLC patients undergoing chemotherapy or targeted therapy remains unclear.
Methods: Patients with EGFR wild-type (EGFR-WT) or mutant (EGFR-Mut) non-small cell lung cancer (NSCLC), diagnosed between January 2020 and January 2024, were included in this study.
BMC Pregnancy Childbirth
January 2025
Department of Intensive Care Medicine, Army Medical Center of PLA, No. 10 Changjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
Background: Pregnancy-associated atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) caused by uncontrolled activation of the complement system during pregnancy or the postpartum period. In the intensive care unit, aHUS must be differentiated from sepsis-related multiple organ dysfunction, thrombotic thrombocytopenic purpura (TTP), hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome. Early recognition of aHUS is critical for effective treatment and improved prognosis.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
Background: Preeclampsia, characterized by hypertension and proteinuria during pregnancy, poses significant risks to both mother and fetus. The complement system's aberrant activation, notably the C3AR1, is important to the pathogenesis of preeclampsia, although the precise mechanisms are not fully understood.
Materials And Methods: Utilizing the Comparative Toxicogenomics Database (CTD) and Molecular Signatures Database (MSigDB), we identified complement system targets associated with preeclampsia and environmental pollutants.
Mol Med
January 2025
Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!