Hybridization creates novel gene combinations that may generate important evolutionary novelty, but may also reduce existing adaptation by interrupting inherent biological processes, such as genotype-environment interactions. Hybridization often causes substantial change in patterns of gene expression, which, in turn, may cause phenotypic change. Rainbow trout (Oncorhynchus mykiss) and cutthroat trout (O. clarkii) produce viable hybrids in the wild, and introgressive hybridization with introduced rainbow trout is a major conservation concern for native cutthroat trout. The two species differ in body shape, which is likely an evolutionary adaptation to their native environments, and their hybrids tend to show intermediate morphology. The characterization of gene expression patterns may provide insights on the genetic basis of hybrid and parental morphologies, as well as on the ecological performance of hybrids in the wild. Here, we evaluated the expression of eight growth-related genes (MSTN-1a, MSTN-1b, MyoD1a, MyoD1b, MRF-4, IGF-1, IGF-2, and CAST-L) and the relationship of these genes with growth traits (length, weight, and condition factor) in six line crosses: both parental species, both reciprocal F1 hybrids, and both first-generation backcrosses (F1 x rainbow trout and F1 x cutthroat trout). Four of these genes were differentially expressed among rainbow, cutthroat, and their hybrids. Transcript abundance was significantly correlated with growth traits across the parent species, but not across hybrids. Our findings suggest that rainbow and cutthroat trout exhibit differences in muscle growth regulation, that transcriptional networks may be modified by hybridization, and that hybridization disrupts intrinsic relationships between gene expression and growth patterns that may be functionally important for phenotypic adaptations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612777PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141373PLOS

Publication Analysis

Top Keywords

cutthroat trout
20
rainbow trout
16
gene expression
12
trout
9
growth-related genes
8
growth patterns
8
hybrids wild
8
growth traits
8
rainbow cutthroat
8
hybridization
6

Similar Publications

Environmental DNA (eDNA) analysis has become a transformative technology, but sample collection methods lack standardization and sampling at effective frequencies requires considerable field effort. Autonomous eDNA samplers that can sample water at high frequencies offer potential solutions to these problems. We present results from four case studies using a prototype autonomous eDNA sampler as part of the U.

View Article and Find Full Text PDF

Inbreeding avoidance and cost in a small, isolated trout population.

Proc Biol Sci

November 2024

Wildlife Biology Program, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA.

The persistence of small populations is influenced by the degree and cost of inbreeding, with the degree of inbreeding depending on whether close-kin mating is passively or actively avoided. Few studies have simultaneously studied these factors. We examined inbreeding in a small, isolated population of westslope cutthroat trout using extensive genetic and demographic data.

View Article and Find Full Text PDF

Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream.

View Article and Find Full Text PDF

For almost 200 years, the taxonomy of cutthroat trout (), a salmonid native to Western North America, has been in flux as ichthyologists and fisheries biologists have tried to describe the diversity within these fishes. Starting in the 1950s, Robert Behnke reexamined the cutthroat trout and identified 14 subspecies based on morphological traits, Pleistocene events, and modern geographic ranges. His designations became instrumental in recognizing and preserving the remaining diversity of cutthroat trout.

View Article and Find Full Text PDF

Shrinking sizes of trout and salamanders are unexplained by climate warming alone.

Sci Rep

June 2024

USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA.

Decreases in body sizes of animals related to recent climate warming can affect population persistence and stability. However, direct observations of average sizes over time and their interrelationships with underlying density-dependent and density-independent processes remain poorly understood owing to the lack of appropriate long-term datasets. We measured body size of two species common to headwater streams in coastal and Cascades ecoregions of the Pacific Northwest of North America over multiple decades, comparing old-growth and managed forests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!