During hypoxia-induced pulmonary hypertension (HPH), pulmonary artery smooth muscle cells (PASMCs) proliferate as part of the characteristic pulmonary vascular remodeling. We investigated the expression of mitofusin 2(Mfn2) and its role in maintaining the balance between PASMC proliferation and apoptosis during hypoxia. In an experimental model of HPH, we exposed rats to hypoxia (10% ± 0.5% O2) or room air for 4 weeks. We found that Mfn2 messenger RNA and protein levels were reduced and that proliferating cell nuclear antigen protein expression was upregulated in HPH rat lung tissues. We also exposed primary cultured PASMCs from rat pulmonary arterioles to normoxia (21% O2/5% CO2) or hypoxia (2.5% O2/5% CO2) for 24 hours. We found that PASMC proliferation increased under hypoxic conditions and that more hypoxic cells than normoxic cells entered the S + G2/M phase. Additionally, phosphorylated Akt and proliferating cell nuclear antigen expression increased, whereas Mfn2 expression, cleaved caspase 9 expression, and the ratio of mitochondrial to cytosolic cytochrome C expression each decreased. These hypoxia-induced effects were reversed in PASMCs by Mfn2 overexpression and by phosphatidylinositide 3-kinases (PI3K) inhibition. Our results indicate that downregulation of Mfn2 in HPH may activate the PI3K/Akt pathway, thereby causing more cells to enter the S + G2/M phase of the cell cycle and inhibiting the mitochondrial apoptosis pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FJC.0000000000000333 | DOI Listing |
Clin Radiol
November 2024
Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China. Electronic address:
Aim: To investigate the relationship between epicardial adipose tissue (EAT) and myocardial strain and the severity of coronary artery disease (CAD), and to evaluate the predictive value of EAT parameters in early left ventricular (LV) diastolic dysfunction.
Materials And Methods: One hundred seventy patients with suspected CAD who underwent both coronary computed tomography angiography and echocardiography were enrolled in 2020. LV global strains were calculated using commercial software.
J Nucl Med
January 2025
Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China; and
The purpose of this study was to investigate the feasibility of using F-labeled fibroblast activation protein inhibitor (FAPI) PET/CT in assessing the fibrotic remodeling of the pulmonary artery (PA) and the right ventricle (RV) in pulmonary arterial hypertension (PAH). In a rat model of monocrotaline-induced PAH, rats were euthanized at different time points for tissue analysis (fibroblast activation protein immunofluorescence and Masson's trichrome staining) after completing F-FAPI PET/CT and hemodynamic measurements. Thirty-eight PAH patients were enrolled to participate in F-FAPI PET/CT imaging, with right heart catheterization and echocardiography performed within 1 wk to assess pulmonary hemodynamics and cardiac function.
View Article and Find Full Text PDFSci Adv
January 2025
Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA.
Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.
View Article and Find Full Text PDFLung
January 2025
Department of Emergency Medicine, Aarupadai Veedu Medical College and Hospital, Vinayaka Missions Research Foundation, Puducherry, India.
Background: Hemoptysis, the expectoration of blood from the lower respiratory tract, varies in severity and necessitates effective management to mitigate morbidity. Traditional treatments include bronchial artery embolization and pharmacological approaches. Tranexamic acid (TXA), an antifibrinolytic agent known for its efficacy in reducing bleeding during surgery and trauma, is being explored for its efficacy in treating Hemoptysis via both intravenous and inhalational routes.
View Article and Find Full Text PDFPulmonary artery (PA) flow analysis is crucial for understanding the progression of pulmonary hypertension (PH). We hypothesized that PA flow characteristics vary according to PH etiology. In this study, we used 4D flow cardiovascular magnetic resonance imaging (CMR) to compare PA flow velocity and wall shear stress (WSS) between patients with pulmonary arterial hypertension (PAH) and those with heart failure with preserved ejection fraction and pulmonary hypertension (PH-HFpEF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!