Polydatin Inhibits Mitochondrial Dysfunction in the Renal Tubular Epithelial Cells of a Rat Model of Sepsis-Induced Acute Kidney Injury.

Anesth Analg

From the *Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P.R. China; †Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, P.R. China; ‡Department of Pathophysiology, Southern Medical University, Guangzhou, Guangdong Province, P.R. China; §Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China; ∥Institute of Translation Medicine, University of South China, Hunan Province, China; and ¶Department of Pathology, Maternal and Child Health Hospital of Liuzhou, Liu Zhou, Guangxi Province, P.R. China.

Published: November 2015

Background: Mitochondrial injury is a major cause of sepsis-induced organ failure. Polydatin (PD), a natural polyphenol, demonstrates protective mitochondrial effects in neurons and arteriolar smooth muscle cells during severe shock. In this study, we investigated the effects of PD on renal tubular epithelial cell (RTEC) mitochondria in a rat model of sepsis-induced acute kidney injury.

Methods: Rats underwent cecal ligation and puncture (CLP) to mimic sepsis-induced acute kidney injury. Rats were randomly divided into sham, CLP + normal saline, CLP + vehicle, and CLP + PD groups. Normal saline, vehicle, and 30 mg/kg PD were administered at 6, 12, and 18 hours after CLP or sham surgery via the tail vein. Mitochondrial morphology, metabolism, and function in RTECs were then assessed. Serum cytokines, renal function, survival, and histologic changes in the kidney were also evaluated.

Results: CLP increased lipid peroxide content, lysosomal instability, and opening of the mitochondrial permeability transition pore and caused mitochondrial swelling. Moreover, mitochondrial membrane potential (ΔΨm) was decreased and ATP levels reduced after CLP. PD inhibited all the above effects. It also inhibited the inflammatory response, improved renal function, attenuated histologic indicators of kidney damage, and prolonged survival.

Conclusions: PD protects RTECs against mitochondrial dysfunction and prolongs survival in a rat model of sepsis-induced acute kidney injury. These effects may partially result from reductions in interleukin-6 and oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1213/ANE.0000000000000977DOI Listing

Publication Analysis

Top Keywords

sepsis-induced acute
16
acute kidney
16
rat model
12
model sepsis-induced
12
kidney injury
12
mitochondrial
8
mitochondrial dysfunction
8
renal tubular
8
tubular epithelial
8
normal saline
8

Similar Publications

Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.

View Article and Find Full Text PDF

Background: Sepsis is a systemic inflammatory response caused by infection. When this inflammatory response spreads to the lungs, it can lead to acute lung injury (ALI) or more severe acute respiratory distress syndrome (ARDS). Pulmonary fibrosis is a potential complication of these conditions, and the early occurrence of pulmonary fibrosis is associated with a higher mortality rate.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Yi-Shen-Hua-Shi granules (YSHSG) have been shown to improve kidney function in various renal disorders, which are characterized by the sudden decline and impairment of kidney function.

Aim Of The Study: To investigate the precise mechanisms and targets of YSHSG in combating sepsis-induced AKI.

Materials And Methods: Through network pharmacology, the active ingredients, main target proteins, and related signaling pathways of YSHSG in the treatment of sepsis-induced AKI were predicted.

View Article and Find Full Text PDF

The aim of this study was to reveal the mechanism of cold stimulation (CS)-bronchial epithelial cells (BECs) derived exosomes (CS-BECs-exo) aggravated sepsis induced acute lung injury (SALI). CS-BECs-exo were separated by differential centrifugation and were characterized. Proteomics, immunoprecipitation, and RAGE knockout (RAGE) mice were used to investigate the mechanism of CS-BECs-exo aggravated SALI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!