AI Article Synopsis

  • Primary myelofibrosis (PMF) is a serious blood disorder characterized by bone marrow fibrosis, which disrupts normal blood cell production.
  • Although mutations like JAK2V617F are found in many PMF patients, the exact cause of the disease is still unclear.
  • Research focusing on bone marrow mesenchymal stromal cells (BM-MSC) aims to uncover how these cells contribute to the disrupted environment that affects hematopoietic stem and progenitor cell function in PMF.

Article Abstract

Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm whose severity and treatment complexity are attributed to the presence of bone marrow (BM) fibrosis and alterations of stroma impairing the production of normal blood cells. Despite the recently discovered mutations including the JAK2V617F mutation in about half of patients, the primitive event responsible for the clonal proliferation is still unknown. In the highly inflammatory context of PMF, the presence of fibrosis associated with a neoangiogenesis and an osteosclerosis concomitant to the myeloproliferation and to the increase number of circulating hematopoietic progenitors suggests that the crosstalk between hematopoietic and stromal cells is deregulated in the PMF BM microenvironmental niches. Within these niches, mesenchymal stromal cells (BM-MSC) play a hematopoietic supportive role in the production of growth factors and extracellular matrix which regulate the proliferation, differentiation, adhesion and migration of hematopoietic stem/progenitor cells. A transcriptome analysis of BM-MSC in PMF patients will help to characterize their molecular alterations and to understand their involvement in the hematopoietic stem/progenitor cell deregulation that features PMF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583614PMC
http://dx.doi.org/10.1016/j.gdata.2015.04.017DOI Listing

Publication Analysis

Top Keywords

stromal cells
12
transcriptome analysis
8
bone marrow
8
mesenchymal stromal
8
primary myelofibrosis
8
hematopoietic stem/progenitor
8
cells
5
pmf
5
hematopoietic
5
analysis bone
4

Similar Publications

Tissue clearing combined with high-resolution confocal imaging is a cutting-edge approach for dissecting the three-dimensional (3D) architecture of tissues and deciphering cellular spatial interactions under physiological and pathological conditions. Deciphering the spatial interaction of leptin receptor-expressing (LepR) stromal cells with other compartments in the bone marrow is crucial for a deeper understanding of the stem cell niche and the skeletal tissue. In this study, we introduce an optimized protocol for the 3D analysis of skeletal tissues, enabling the visualization of hematopoietic and stromal cells, especially LepR stromal cells, within optically cleared bone hemisections.

View Article and Find Full Text PDF

Background: Primary pulmonary lymphoepithelial carcinoma (PPLEC) is a rare form of lung malignancy, accounting for only 0.7% of all lung cancers. It is currently classified as a distinct subtype within squamous cell carcinomas.

View Article and Find Full Text PDF

Regenerative properties of bone marrow mesenchymal stem cell derived exosomes in rotator cuff tears.

J Transl Med

January 2025

Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Rotator cuff injury (RCI), characterized by shoulder pain and restricted mobility, represents a subset of tendon-bone insertion injuries (TBI). In the majority of cases, surgical reconstruction of the affected tendons or ligaments is required to address the damage. However, numerous clinical failures have underscored the suboptimal outcomes associated with such procedures.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype characterized by aggressive clinical behavior and poor prognosis. The immune landscape associated with TNBC often reveals high immunogenicity. Therefore, immunotherapy, which has demonstrated its efficacy in different cancer types, could be a promising strategy for TNBC, given the limited therapeutic options currently available besides conventional chemotherapy.

View Article and Find Full Text PDF

Dynamics of resistance to immunotherapy and TKI in patients with advanced renal cell carcinoma.

Cancer Treat Rev

January 2025

Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy. Electronic address:

Immune-based combinations are the cornerstone of the first-line treatment of metastatic renal cell carcinoma patients, leading to outstanding outcomes. Nevertheless, primary resistance and disease progression is a critical clinical challenge. To properly address this issue, it is pivotal to understand the mechanisms of resistance to immunotherapy and tyrosine kinase inhibitors, that tumor eventually develop under treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!