A taxonomic description of bacteria was deduced from 5.78 Mb metagenomic sequence retrieved from Tulsi Shyam hot spring, India using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). Metagenome contained 10,893 16S rDNA sequences that were analyzed by MG-RAST server to generate the comprehensive profile of bacteria. Metagenomic data are available at EBI under EBI Metagenomics database with accession no. ERP009559. Metagenome sequences represented the 98.2% bacteria origin, 1.5% of eukaryotic and 0.3% were unidentified. A total of 16 bacterial phyla demonstrating 97 families and 287 species were revealed in the hot spring metagenome. Most abundant phyla were Firmicutes (65.38%), Proteobacteria (21.21%) and unclassified bacteria (10.69%). Whereas, Peptostreptococcaceae (37.33%), Clostridiaceae (23.36%), and Enterobacteriaceae (16.37%) were highest reported families in metagenome. Ubiquitous species were Clostridium bifermentans (17.47%), Clostridium lituseburense (13.93%) and uncultured bacterium (10.15%). Our data provide new information on hot spring bacteria and shed light on their abundance, diversity, distribution and coexisting organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536058PMC
http://dx.doi.org/10.1016/j.gdata.2015.03.003DOI Listing

Publication Analysis

Top Keywords

hot spring
12
tulsi shyam
8
shyam hot
8
bacteria
5
cultivation-independent comprehensive
4
comprehensive survey
4
survey bacterial
4
bacterial diversity
4
diversity tulsi
4
hot
4

Similar Publications

Plant Growth-Promoting and Herbicidal Bacteria as Potential Bio-Based Solutions for Agriculture in Desertic Regions.

Plants (Basel)

December 2024

Laboratory of Plant Pathology and Bioproducts, Faculty of Agronomic Sciences, University of Tarapacá, Av. General Velásquez 1775, Arica 1000000, Chile.

The region of Arica and Parinacota hosts unexplored remote sites with unique characteristics suitable for developing novel agricultural bioproducts. Notable locations include Jurasi Hot Springs, Polloquere Hot Springs, and Amuyo Lagoons, featuring open pools fed by thermal mountain springs. These geothermal sites harbor bacteria with plant growth-promoting activities, particularly interesting to the strains J19, TP22, A20, and A3.

View Article and Find Full Text PDF

Genomic insights into Thermomonas hydrothermalis: potential applications in industrial biotechnology.

World J Microbiol Biotechnol

January 2025

Department of Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey.

Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.

View Article and Find Full Text PDF

In this study, the impact of the varying environments, wet-cool (2017), dry-hot (2018), and fluctuating (2019), on two spring wheat genotypes, Diskett and Bumble, grown in field conditions in southern Sweden was studied. From harvested grains, polymeric gluten proteins were fractionated and collected using SE-HPLC and then analyzed with LC-MS/MS. Proteins and peptides identified through searches against the protein sequences of (taxon 4565) from the UniProtKB database showed 7 high molecular weight glutenin subunits (HMW-GS) and 24 low molecular weight glutenin subunits (LMW-GS) with different enrichment levels for both genotypes.

View Article and Find Full Text PDF

Poly(lactide-co-glycolide) (PLGA) is widely used in a variety of long-acting injectables. However, its biodegradable nature creates potential chemical stability challenges during melt extrusion, where PLGA is exposed to elevated temperature (100-140 °C) for several minutes. This study evaluated the thermal stability of three PLGA grades (Resomer® 502, 502H, and 505) with varying molecular weights and chain-ends using a differential scanning calorimeter and twin-screw extruder.

View Article and Find Full Text PDF

Abundant and active community members respond to diel cycles in hot spring phototrophic mats.

ISME J

January 2025

Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, CA, United States.

Photosynthetic microbial mats in hot springs can provide insights into the diel behaviors of communities in extreme environments. In this habitat, photosynthesis dominates during the day, leading to super-oxic conditions, with a rapid transition to fermentation and anoxia at night. Multiple samples were collected from two springs over several years to generate metagenomic and metatranscriptomic datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!