Pseudomonas chlororaphis HT66, a plant growth-promoting rhizobacterium that produces phenazine-1-carboxamide with high yield, was compared with three genomic sequenced P. chlororaphis strains, GP72, 30-84 and O6. The genome sizes of four strains vary from 6.66 to 7.30 Mb. Comparisons of predicted coding sequences indicated 4833 conserved genes in 5869-6455 protein-encoding genes. Phylogenetic analysis showed that the four strains are closely related to each other. Its competitive colonization indicates that P. chlororaphis can adapt well to its environment. No virulence or virulence-related factor was found in P. chlororaphis. All of the four strains could synthesize antimicrobial metabolites including different phenazines and insecticidal protein FitD. Some genes related to the regulation of phenazine biosynthesis were detected among the four strains. It was shown that P. chlororaphis is a safe PGPR in agricultural application and could also be used to produce some phenazine antibiotics with high-yield.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535895 | PMC |
http://dx.doi.org/10.1016/j.gdata.2015.01.006 | DOI Listing |
Bioresour Technol
January 2025
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Phenazine-1,6-dicarboxylic acid (PDC) is a precursor of complex substituted phenazines used as pesticides and pharmaceuticals. The PDC biosynthesis exists the low production and the high proportion of by-products phenazine-1-carboxylic acid (PCA) derivatives in Pseudomonas P3△A. Herein, PDC production were improved by systematic metabolic engineering and synthetic regulation.
View Article and Find Full Text PDFPlant Dis
January 2025
Clemson University, Entomology, Soils, and Plant Sciences, 120 Long Hall, Clemson, South Carolina, United States, 29634-0315;
Howler EVO is a biological fungicide based on metabolites of the bacterium Pseudomonas chlororaphis strain AFS009. One of the metabolites, pyrrolnitrin (PRN), is a chemical analogue of the phenylpyrrole fludioxonil used to manage gray mold of fruit crops caused by Botrytis cinerea. Resistance to fludioxonil in B.
View Article and Find Full Text PDFToxics
December 2024
Ufa Institute of Biology of Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia.
The ability of some rhizosphere bacteria to mitigate herbicidal stress in cultivated plants may be useful in agriculture and bioremediation. There is poor understanding of how bacteria directly or through herbicide degradation affect the biochemical processes in plants exposed to sulfonylurea herbicides. In this study, treatment with a combination of herbicide metsulfuron-methyl (MSM) and bacteria ( DA1.
View Article and Find Full Text PDFCurr Microbiol
November 2024
Research Institute of Pomology, Shanxi Agricultural University, Taiyuan, Shanxi, People's Republic of China.
The accumulation of autotoxic substances and fungal pathogens in soil are the two leading causes of continuous cropping obstacles. In this context, the use of beneficial strains for the biological control of continuous cropping obstacles is a promising research direction. In this work, the functions of Pseudomonas chlororaphis ZH2 in antagonizing pathogenic fungi and degrading autotoxic substances during continuous cropping were studied via genome-wide sequence analysis, antifungal activity in vitro, and autotoxic substances degrading tests.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France. Electronic address:
Pseudomonads are well-known for their plant growth-promoting properties and biocontrol capabilities against microbial pathogens. Recently, their potential to protect crops from parasitic plants has garnered attention. This study investigates the potential of different Pseudomonas strains to inhibit broomrape growth and to protect host plants against weed infestation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!