Transcriptomes are dynamic and unique, with each cell type/tissue, developmental stage and species expressing a different repertoire of RNA transcripts. Most mRNAs and well-characterized long noncoding RNAs are shaped with a 5' cap and 3' poly(A) tail, thus conventional transcriptome analyses typically start with the enrichment of poly(A)+ RNAs by oligo(dT) selection, followed by deep sequencing approaches. However, accumulated lines of evidence suggest that many RNA transcripts are processed by alternative mechanisms without 3' poly(A) tails and, therefore, fail to be enriched by oligo(dT) purification and are absent following deep sequencing analyses. We have described an enrichment strategy to purify non-polyadenylated (poly(A)-/ribo-) RNAs from human total RNAs by removal of both poly(A)+ RNA transcripts and ribosomal RNAs, which led to the identification of many novel RNA transcripts with non-canonical 3' ends in human. Here, we describe the application of non-polyadenylated RNA-sequencing in rhesus monkey and mouse cell lines/tissue, and further profile the transcription of non-polyadenylated RNAs across species, providing new resources for non-polyadenylated RNA identification and comparison across species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535946 | PMC |
http://dx.doi.org/10.1016/j.gdata.2014.07.005 | DOI Listing |
Front Vet Sci
January 2025
Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China.
Introduction: Bovine coronavirus (BCoV) is an important pathogen of enteric and respiratory disease in cattle, resulting in huge economic losses to the beef and dairy industries worldwide. A specific and sensitive detection assay for BCoV is critical to the early-stage disease prevention and control.
Methods: We established a specific, sensitive, and stable assay for BCoV nucleic acid detection based on CRISPR/Cas13a combined with reverse transcription recombinase-aided amplification (RT-RAA) technology.
Front Immunol
January 2025
Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Introduction: The role of mast cells (MCs) in clear cell renal carcinoma (ccRCC) is unclear, and comprehensive single-cell studies of ccRCC MCs have not yet been performed.
Methods: To investigate the heterogeneity and effects of MCs in ccRCC, we studied single-cell transcriptomes from four ccRCC patients, integrating both single-cell sequencing and bulk tissue sequencing data from online sequencing databases, followed by validation via spatial transcriptomics and multiplex immunohistochemistry (mIHC).
Results: We identified four MC signature genes (TPSB2, TPSAB1, CPA3, and HPGDS).
Front Immunol
January 2025
Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Background: Non-alcoholic fatty liver disease (NAFLD) constitutes the most prevalent chronic liver disease worldwide. Progression to non-alcoholic steatohepatitis (NASH), the immune cell reservoir within the liver undergoes remodeling, exacerbating liver inflammation and potentially leading to liver fibrosis. Jiangtang Qingre Formula (JQF) is an effective prescription for the clinical treatment of NAFLD.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Object: We aim to explore the immunomodulatory properties of T cells on different titanium nanotubes and the key immunological factors involved in this process.
Methods: Transcriptome data from GEO database of healthy people and healthy implants were used to analyze cell infiltration and factor distribution of adaptive immune using bioinformatics tools. T cells from activated rat were cultured on titanium nanotubes that were prepared by anodization with different diameters (P-0, NT15-30 nm, NT40-100 nm, NT70-200 nm).
Front Cell Dev Biol
January 2025
Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia.
Current dissociation methods for solid tissues in scRNA-seq studies do not guarantee intact single-cell isolation, especially for sensitive and complex human endocrine tissues. Most studies rely on enzymatic dissociation of fresh samples or nuclei isolation from frozen samples. Dissociating whole intact cells from fresh-frozen samples, commonly collected by biobanks, remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!