Nuclear Ca(2+) is important for the regulation of several nuclear processes such as gene expression. Localized Ca(2+) signals (LCSs) in skeletal muscle fibers of mice have been mainly studied as Ca(2+) release events from the sarcoplasmic reticulum. Their location with regard to cell nuclei has not been investigated. Our study is based on the hypothesis that LCSs associated with nuclei are present in skeletal muscle fibers of adult mice. Therefore, we carried out experiments addressing this question and we found novel Ca(2+) signals associated with nuclei of skeletal muscle fibers (with possibly attached satellite cells). We measured localized nuclear and perinuclear Ca(2+) signals (NLCSs and PLCSs) alongside cytosolic localized Ca(2+) signals (CLCSs) during a hypertonic treatment. We also observed NLCSs under isotonic conditions. The NLCSs and PLCSs are Ca(2+) signals in the range of micrometer [FWHM (full width at half maximum): 2.75 ± 0.27 μm (NLCSs) and 2.55 ± 0.17 μm (PLCSs), S.E.M.]. Additionally, global nuclear Ca(2+) signals (NGCSs) were observed. To investigate which type of Ca(2+) channels contribute to the Ca(2+) signals associated with nuclei in skeletal muscle fibers, we performed measurements with the RyR blocker dantrolene, the DHPR blocker nifedipine or the IP3R blocker Xestospongin C. We observed Ca(2+) signals associated with nuclei in the presence of each blocker. Nifedipine and dantrolene had an inhibitory effect on the fraction of fibers with PLCSs. The situation for the fraction of fibers with NLCSs is more complex indicating that RyR is less important for the generation of NLCSs compared to the generation of PLCSs. The fraction of fibers with NLCSs and PLCSs is not reduced in the presence of Xestospongin C. The localized perinuclear and intranuclear Ca(2+) signals may be a powerful tool for the cell to regulate adaptive processes as gene expression. The intranuclear Ca(2+) signals may be particularly interesting in this respect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586431 | PMC |
http://dx.doi.org/10.3389/fphys.2015.00263 | DOI Listing |
J Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Molecules
January 2025
Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea.
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
Calreticulin (CRT) is a 46 kDa highly conserved protein initially identified as calregulin, a prominent Ca-binding protein of the endoplasmic reticulum (ER). Subsequent studies have established that CRT functions in the ER's protein folding response and Ca homeostatic mechanisms. An ER retention signal on the carboxyl terminus of CRT suggested that CRT was restricted to the ER.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA.
Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective, Ca-permeable cation channel involved in thermoregulation and other physiological processes, such as basal tear secretion, cell differentiation, and insulin homeostasis. The activation and deactivation of TRPM8 occur through genetic modifications, channel interactions, and signaling cascades. Recent evidence suggests a significant role of TRPM8 in the hypothalamus and amygdala related to pain sensation and sexual behavior.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China.
Citrus peel essential oils (CPEOs) have demonstrated substantial medicinal potential for glioblastoma treatment because of their extensive antitumor effects, low potential for drug resistance, and ability to cross the human blood-brain barrier. In this study, the chemical compositions of five CPEOs were analyzed via gas chromatography-mass spectrometry (GC-MS). CCK8 assays were used to evaluate the ability of five CPEOs to inhibit U251 human glioblastoma cells, and XLB and RA were selected for further investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!