Scientific text annotation has become an important task for biomedical scientists. Nowadays, there is an increasing need for the development of intelligent systems to support new scientific findings. Public databases available on the Web provide useful data, but much more useful information is only accessible in scientific texts. Text annotation may help as it relies on the use of ontologies to maintain annotations based on a uniform vocabulary. However, it is difficult to use an ontology, especially those that cover a large domain. In addition, since scientific texts explore multiple domains, which are covered by distinct ontologies, it becomes even more difficult to deal with such task. Moreover, there are dozens of ontologies in the biomedical area, and they are usually big in terms of the number of concepts. It is in this context that ontology modularization can be useful. This work presents an approach to annotate scientific documents using modules of different ontologies, which are built according to a module extraction technique. The main idea is to analyze a set of single-ontology annotations on a text to find out the user interests. Based on these annotations a set of modules are extracted from a set of distinct ontologies, and are made available for the user, for complementary annotation. The reduced size and focus of the extracted modules tend to facilitate the annotation task. An experiment was conducted to evaluate this approach, with the participation of a bioinformatician specialist of the Laboratory of Peptides and Proteins of the IOC/Fiocruz, who was interested in discovering new drug targets aiming at the combat of tropical diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbi.2015.09.022 | DOI Listing |
Heliyon
January 2025
Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.
View Article and Find Full Text PDFOral Radiol
January 2025
Department of Software Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, 4800, Turkey.
Objectives: Pulp stones are ectopic calcifications located in pulp tissue. The aim of this study is to introduce a novel method for detecting pulp stones on panoramic radiography images using a deep learning-based two-stage pipeline architecture.
Materials And Methods: The first stage involved tooth localization with the YOLOv8 model, followed by pulp stone classification using ResNeXt.
Talanta
January 2025
Department of Chemistry-BMC, Uppsala University, 75123, Uppsala, Sweden; Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, Sweden. Electronic address:
Spatial metabolomics offers the combination of molecular identification and localization. As a tool for spatial metabolomics, mass spectrometry imaging (MSI) can provide detailed information on localization. However, molecular annotation with MSI is challenging due to the lack of separation prior to mass spectrometric analysis.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
Background: Despite the ample benefits of physical activity (PA), many individuals do not meet the minimum PA recommended by health organizations. Structured questionnaires and interviews are commonly used to study why individuals perform PA and their strategies to adhere to PA. However, certain biases are inherent to these tools that limit what can be concluded from their results.
View Article and Find Full Text PDFMicrosc Microanal
January 2025
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany.
In catalysis research, the amount of microscopy data acquired when imaging dynamic processes is often too much for nonautomated quantitative analysis. Developing machine learned segmentation models is challenged by the requirement of high-quality annotated training data. We thus substitute expert-annotated data with a physics-based sequential synthetic data model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!