The dissipation of malathion in 5% aqueous extracts of some fruits and vegetables including bell pepper, tomato, cucumber, cantaloupe, carrot, and also buffer (control) was investigated at 37 °C for 4 h. The dissipation trend of malathion in the fruit/vegetable samples and buffer followed first-order double-exponential decay (FODED) and simple first-order kinetic (SFOK) models, respectively. The initial dissipation rate of malathion in tomato (DT10=0.05 h), bell pepper (DT10=0.06 h), and carrot (DT10=0.07 h) was faster compared to the other samples. The slowest rate of pesticide decline belonged to cantaloupe (DT50=1.92 h) with a significant difference from the other samples (p≤0.01), whereas tomato (DT50=0.43 h) and carrot (DT50=0.53 h) showed the fastest dissipation rate. DT90 values derived from the models revealed no significant difference between the samples except for cantaloupe which had the slowest rate of dissipation (DT90=8.27 h) with a significant difference compared to others (p≤0.01). A direct correlation was observed between protein content of the samples and the rate of malathion decline which indicates the role of plant enzymes in degrading malathion residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-015-4865-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!