Molecular and functional evolution of the fungal diterpene synthase genes.

BMC Microbiol

Universite Claude Bernard - Lyon 1, 43 bd. du 11 Novembre 1918, Laboratoire de Biometrie et Biologie Evolutive, UMR CNRS 5558, F-69622, Villeurbanne, France.

Published: October 2015

Background: Terpenes represent one of the largest and most diversified families of natural compounds and are used in numerous industrial applications. Terpene synthase (TPS) genes originated in bacteria as diterpene synthase (di-TPS) genes. They are also found in plant and fungal genomes. The recent availability of a large number of fungal genomes represents an opportunity to investigate how genes involved in diterpene synthesis were acquired by fungi, and to assess the consequences of this process on the fungal metabolism.

Results: In order to investigate the origin of fungal di-TPS, we implemented a search for potential fungal di-TPS genes and identified their presence in several unrelated Ascomycota and Basidiomycota species. The fungal di-TPS phylogenetic tree is function-related but is not associated with the phylogeny based on housekeeping genes. The lack of agreement between fungal and di-TPS-based phylogenies suggests the presence of Horizontal Gene Transfer (HGTs) events. Further evidence for HGT was provided by conservation of synteny of di-TPS and neighbouring genes in distantly related fungi.

Conclusions: The results obtained here suggest that fungal di-TPSs originated from an ancient HGT event of a single di-TPS gene from a plant to a fungus in Ascomycota. In fungi, these di-TPSs allowed for the formation of clusters consisting in di-TPS, GGPPS and P450 genes to create functional clusters that were transferred between fungal species, producing diterpenes acting as hormones or toxins, thus affecting fungal development and pathogenicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617483PMC
http://dx.doi.org/10.1186/s12866-015-0564-8DOI Listing

Publication Analysis

Top Keywords

fungal di-tps
12
fungal
11
diterpene synthase
8
genes
8
di-tps genes
8
fungal genomes
8
di-tps
7
molecular functional
4
functional evolution
4
evolution fungal
4

Similar Publications

Miltiradiene is a key intermediate in the biosynthesis of many important natural diterpene compounds with significant pharmacological activity, including triptolide, tanshinones, carnosic acid and carnosol. Sufficient accumulation of miltiradiene is vital for the production of these medicinal compounds. In this study, comprehensive engineering strategies were applied to construct a high-yielding miltiradiene producing yeast strain.

View Article and Find Full Text PDF

Molecular and functional evolution of the fungal diterpene synthase genes.

BMC Microbiol

October 2015

Universite Claude Bernard - Lyon 1, 43 bd. du 11 Novembre 1918, Laboratoire de Biometrie et Biologie Evolutive, UMR CNRS 5558, F-69622, Villeurbanne, France.

Background: Terpenes represent one of the largest and most diversified families of natural compounds and are used in numerous industrial applications. Terpene synthase (TPS) genes originated in bacteria as diterpene synthase (di-TPS) genes. They are also found in plant and fungal genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!