Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2015.10.006 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
The bHLH (basic Helix-Loop-Helix) transcription factor serves as pivotal controller in plant growth and development. In a previous study, the overexpression of in L. Ailsa Craig (AC) altered the JA (Jasmonic acid) response and endogenous GA (Gibberellic acid) content.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
Background: Tacrolimus is widely used as a first-line immunosuppressant in transplant immunology; however, its clinical application is constrained by the narrow therapeutic index and considerable interindividual variability. In this study, we identified the potential regulatory role of a novel promoter polymorphism, rs4519508 C > T, in the tacrolimus pharmacodynamic pathway.
Methods: Dual-luciferase reporter assays and bioinformatic analysis were applied to assess the impact of allelic variation.
PLoS Biol
January 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.
View Article and Find Full Text PDFJ Biochem
January 2025
Graduate School of Engineering, Kogakuin University, Tokyo, Japan.
Poult Sci
January 2025
Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, PR China. Electronic address:
Avian pathogenic Escherichia coli (APEC) is a major threat to the poultry industry, causing bloodstream and extraintestinal infections. Type II toxin-antitoxin (TA) systems are known to aid bacterial pathogens in adapting to stress, promoting persister cell formation, and enhancing virulence. While type II TA systems have been extensively studied in many pathogens, APEC-derived TAs have received limited attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!