Molecular transport in collagenous tissues measured by gel electrophoresis.

J Biomech

Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA. Electronic address:

Published: November 2015

Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2015.10.006DOI Listing

Publication Analysis

Top Keywords

electrophoretic mobility
20
molecular transport
16
gel electrophoresis
12
transport collagenous
8
collagenous tissues
8
transport tissues
8
tissue
8
method measure
8
molecules tissue
8
tissue samples
8

Similar Publications

SlUPA-like, a bHLH Transcription Factor in Tomato (), Serves as the Crosstalk of GA, JA and BR.

Int J Mol Sci

December 2024

Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.

The bHLH (basic Helix-Loop-Helix) transcription factor serves as pivotal controller in plant growth and development. In a previous study, the overexpression of in L. Ailsa Craig (AC) altered the JA (Jasmonic acid) response and endogenous GA (Gibberellic acid) content.

View Article and Find Full Text PDF

Background: Tacrolimus is widely used as a first-line immunosuppressant in transplant immunology; however, its clinical application is constrained by the narrow therapeutic index and considerable interindividual variability. In this study, we identified the potential regulatory role of a novel promoter polymorphism, rs4519508 C > T, in the tacrolimus pharmacodynamic pathway.

Methods: Dual-luciferase reporter assays and bioinformatic analysis were applied to assess the impact of allelic variation.

View Article and Find Full Text PDF

Cell wall components of gut commensal bacteria stimulate peritrophic matrix formation in malaria vector mosquitoes through activation of the IMD pathway.

PLoS Biol

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.

View Article and Find Full Text PDF
Article Synopsis
  • Non-triple helical collagen polypeptides (NTHs) are produced in tumor cells and tissues, lacking the typical collagen structure, and were found in various tumor cell lines and human lung cancer samples.
  • NTH production is influenced by serum concentration and hypoxic conditions, and they may play a role in tumor angiogenesis despite the presence of adequate ascorbic acid.
  • The study indicates that NTH production correlates with the accumulation of hypoxia-inducible factor-1α (HIF-1α), but HIF-1α doesn’t directly drive NTH α1(IV) production, suggesting NTHs could be potential therapeutic targets for cancer treatment.
View Article and Find Full Text PDF

YafN-YafO toxin-antitoxin system contributes to stress resistance and virulence of avian pathogenic Escherichia coli.

Poult Sci

January 2025

Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, PR China. Electronic address:

Avian pathogenic Escherichia coli (APEC) is a major threat to the poultry industry, causing bloodstream and extraintestinal infections. Type II toxin-antitoxin (TA) systems are known to aid bacterial pathogens in adapting to stress, promoting persister cell formation, and enhancing virulence. While type II TA systems have been extensively studied in many pathogens, APEC-derived TAs have received limited attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!