A Plasmonic Spanner for Metal Particle Manipulation.

Sci Rep

Institute of Micro and Nano Optics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Published: October 2015

Typically, metal particles are difficult to manipulate with conventional optical vortex (OV) tweezers, because of their strong absorption and scattering. However, it has been shown that the vortex field of surface plasmonic polaritons, called plasmonic vortex (PV), is capable of stable trapping and dynamic rotation of metal particles, especially those of mesoscopic and Mie size. To uncover the different physical mechanisms of OV and PV tweezers, we investigated the force distribution and trapping potential of metal particles. In OV tweezers the stronger scattering force causes a positive potential barrier that repels particles, whereas in PV tweezers the dominant gradient force contributes to a negative potential well, resulting in stably trapped particles. Compared with OV, the orbital angular momentum of PV produces an azimuthal scattering force that rotates the trapped particles with more precise radius and position. Our results demonstrate that PV tweezers are superior in manipulation of metal particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612544PMC
http://dx.doi.org/10.1038/srep15446DOI Listing

Publication Analysis

Top Keywords

metal particles
16
particles tweezers
8
scattering force
8
trapped particles
8
particles
7
metal
5
tweezers
5
plasmonic spanner
4
spanner metal
4
metal particle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!