Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Vagus Nerve Stimulation (VNS) has seizure-suppressing effects but the underlying mechanism is not fully understood. To further elucidate the mechanisms underlying VNS-induced seizure suppression at a neurophysiological level, the present study examined effects of VNS on hippocampal excitability using dentate gyrus evoked potentials (EPs) and hippocampal electroencephalography (EEG).
Methods: Male Sprague-Dawley rats were implanted with a VNS electrode around the left vagus nerve. A bipolar stimulation electrode was implanted in the left perforant path and a bipolar recording electrode was implanted in the left dentate gyrus for EEG and dentate field EP recording. Following recovery, VNS was applied in freely moving animals, using a duty cycle of 7 s on/18 s off, 30 Hz frequency, 250 µs pulse width, and an intensity of either 0 (SHAM), 25 µA or 1000 µA, while continuously monitoring EEG and dentate field EPs.
Results: VNS at 1000 µA modulated dentate field EPs by decreasing the field excitatory post-synaptic potential (fEPSP) slope and increasing the latency and amplitude of the population spike. It additionally influenced hippocampal EEG by slowing theta rhythm from 7 Hz to 5 Hz and reducing theta peak and gamma band power. No effects were observed in the SHAM or 25 µA VNS conditions.
Conclusion: VNS modulated hippocampal excitability of freely moving rats in a complex way. It decreased synaptic efficacy, reflected by decreased fEPSP slope and EEG power, but it simultaneously facilitated dentate granule cell discharge indicating depolarization of dentate granule cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brs.2015.09.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!