Dynamics-Driven Allostery in Protein Kinases.

Trends Biochem Sci

Department of Pharmacology, University of California at San Diego, La Jolla, CA, 92093, USA; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, 92093, USA. Electronic address:

Published: November 2015

Protein kinases have very dynamic structures and their functionality strongly depends on their dynamic state. Active kinases reveal a dynamic pattern with residues clustering into semirigid communities that move in μs-ms timescale. Previously detected hydrophobic spines serve as connectors between communities. Communities do not follow the traditional subdomain structure of the kinase core or its secondary structure elements. Instead they are organized around main functional units. Integration of the communities depends on the assembly of the hydrophobic spine and phosphorylation of the activation loop. Single mutations can significantly disrupt the dynamic infrastructure and thereby interfere with long-distance allosteric signaling that propagates throughout the whole molecule. Dynamics is proposed to be the underlying mechanism for allosteric regulation in protein kinases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4630092PMC
http://dx.doi.org/10.1016/j.tibs.2015.09.002DOI Listing

Publication Analysis

Top Keywords

protein kinases
12
dynamics-driven allostery
4
allostery protein
4
kinases
4
kinases protein
4
dynamic
4
kinases dynamic
4
dynamic structures
4
structures functionality
4
functionality depends
4

Similar Publications

As an antibody-drug conjugate (ADC), disitamab vedotin (RC48) is a promising treatment targeting ERBB2 for locally advanced and metastatic bladder cancer (BLCA). However, the subtype heterogeneity of muscle-invasive bladder cancer (MIBC) often leads to different therapeutic outcomes. In our study, we aim to explore sensitivity differences and mechanisms of different molecular subtypes of MIBC to RC48 treatment and develop a strategy for combination therapy against cancer.

View Article and Find Full Text PDF

The () gene family is of rising importance as their fusions are oncogenic, and specific target drugs are available to inhibit the chimera proteins. Pan-TRK antibody, which shows the overexpression of the genes, is a useful tool to detect tumors with or without gene alterations, due to high negative predictive value. Though it is well known that pan-TRK immunopositivity is usually not connected to fusion, the role of other possible genetic alterations is under-researched.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a systemic disease that primarily manifests as chronic synovitis of the symmetric small joints. Despite the availability of various targeted drugs for RA, these treatments are limited by adverse reactions, warranting new treatment approaches. Suberosin (SBR), isolated from Plumbago zeylanica-a medicinal plant traditionally used to treat RA in Asia-possesses notable biological activities.

View Article and Find Full Text PDF

Background: Current research underscores the need to better understand the pathogenic mechanisms and treatment strategies for idiopathic pulmonary fibrosis (IPF). This study aimed to identify key targets involved in the progression of IPF.

Methods: We employed Mendelian randomization (MR) with three genome-wide association studies and four quantitative trait loci datasets to identify key driver genes for IPF.

View Article and Find Full Text PDF

BRAF regulates circPSD3/miR-526b/RAP2A axis to hinder papillary thyroid carcinoma progression.

BMC Mol Cell Biol

January 2025

Department of Ultrasound, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450000, China.

Background: Papillary thyroid carcinoma (PTC) is a common malignant tumor. BRAF mutation has become a common molecular event in PTC pathogenesis. Circular RNA PSD3 (circPSD3) is known to be highly expressed in PTC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!