Background: Improved prediction of neuroblastoma (NB) behavior is needed to detect treatment-refractory disease and may allow further reduction in therapy for some patients. In this regard, serum metabolomic analysis has proven utility in several cancer types. We hypothesize that serum metabolomic analysis will correlate with risk-group classification for patients with NB, and sensitively detect NB in murine xenograft models.
Procedure: A pilot study was done on Children's Oncology Group (COG) tumor bank sera from 10 patients (five high-, five low-risk). An institutional pilot study was carried out on five patients comparing sera obtained during active versus minimal disease (complete response/very good partial response; CR/VGPR).
Xenograft: Flank tumors were established in Nu/Nu mice by injection of NB cell lines (IMR-32, SH-EP, SK-N-AS). Serum for comparison was drawn pre-injection, at 1 week after injection when there was no visible tumor, and again once tumors were grossly visible. Comparisons were also made between tumor bearing mouse serum and supernatants from NB cell lines.
Metabolomic Analysis: Samples were analyzed by nuclear magnetic resonance and/or gas chromatography-mass spectrometry. Multivariate data analysis was conducted using SIMCA-P (Umetrics).
Results: Serum metabolomic analysis differentiated high- and low-risk patients as well as active disease from CR/VGPR. Differences were in nitrogen, amino acid, and carbohydrate metabolism, as well as ketosis. The serum metabolomic signature in murine xenograft models sensitively detected NB cells and correlated with disease burden. Similar metabolic changes attributable to NB were noted in both human and murine serum.
Conclusions: Serum metabolomic analysis can distinguish several characteristics of NB. A larger analysis of COG banked sera is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pbc.25784 | DOI Listing |
Sci Rep
December 2024
Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China.
Many lipid biomarkers of stroke have been identified, but the lipid metabolism in elderly patients with leukoaraiosis remains poorly understood. This study aims to explore lipid metabolic processes in stroke among leukoaraiosis patients, which could provide valuable insights for guiding future antithrombotic therapy. In a cohort of 215 individuals undergoing MRI, 13 stroke patients were matched with controls, and 48 stroke patients with leukoaraiosis were matched with 40 leukoaraiosis patients.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Statistical Science, Duke University, Durham, 27708-0251, USA.
The article is motivated by an application to the EarlyBird cohort study aiming to explore how anthropometrics and clinical and metabolic processes are associated with obesity and glucose control during childhood. There is interest in inferring the relationship between dynamically changing and high-dimensional metabolites and a longitudinal response. Important aspects of the analysis include the selection of the important set of metabolites and the accommodation of missing data in both response and covariate values.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
High SARS-CoV-2-specific antibody levels can protect against SARS-CoV-2 reinfection. The gut microbiome can affect a host's immune response. However, its role in the antibody response to SARS-CoV-2 in people living with HIV (PLWH) remains poorly understood.
View Article and Find Full Text PDFJ Proteomics
December 2024
School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:
Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!