Endothelial sprouting and network formation in collagen- and fibrin-based modular microbeads.

Acta Biomater

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, United States. Electronic address:

Published: January 2016

Unlabelled: A modular tissue engineering approach may have advantages over current therapies in providing rapid and sustained revascularization of ischemic tissue. In this study, modular protein microbeads were prepared from pure fibrin (FIB) and collagen-fibrin composites (COL-FIB) using a simple water-in-oil emulsification technique. Human endothelial cells and fibroblasts were embedded directly in the microbead matrix. The resulting microbeads were generally spheroidal with a diameter of 100-200μm. Cell viability was high (75-80% viable) in microbeads, but was marginally lower than in bulk hydrogels of corresponding composition (85-90% viable). Cell proliferation was significantly greater in COL-FIB microbeads after two weeks in culture, compared to pure FIB microbeads. Upon embedding of microbeads in a surrounding fibrin hydrogel, endothelial cell networks formed inside the microbead matrix and extended into the surrounding matrix. The number of vessel segments, average segment length, and number of branch points was higher in FIB samples, compared to COL-FIB samples, resulting in significantly longer total vessel networks. Anastomosis of vessel networks from adjacent microbeads was also observed. These studies demonstrate that primitive vessel networks can be formed by modular protein microbeads containing embedded endothelial cells and fibroblasts. Such microbeads may find utility as prevascularized tissue modules that can be delivered minimally invasively as a therapy to restore blood flow to ischemic tissues.

Statement Of Significance: Vascularization is critically important for tissue engineering and regenerative medicine, and materials that support and/or promote neovascularization are of value both for translational applications and for mechanistic studies and discovery-based research. Therefore, we fabricated small modular microbeads formulated from pure fibrin (FIB) and collagen-fibrin (COL-FIB) containing endothelial cells and supportive fibroblasts. We explored how cells encapsulated within these materials form microvessel-like networks both within and outside of the microbeads when embedded in larger 3D matrices. FIB microbeads were found to initiate more extensive sprouting into the surrounding ECM in vitro. These results represent an important step towards our goal of developing injectable biomaterial modules containing preformed vascular units that can rapidly restore vascularization to an ischemic tissue in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681647PMC
http://dx.doi.org/10.1016/j.actbio.2015.10.022DOI Listing

Publication Analysis

Top Keywords

microbeads
13
endothelial cells
12
vessel networks
12
modular microbeads
8
tissue engineering
8
ischemic tissue
8
modular protein
8
protein microbeads
8
pure fibrin
8
fibrin fib
8

Similar Publications

Development of detection system for lead ions in mixture solutions using UV-Vis measurements with peptide immobilized microbeads.

Sci Rep

January 2025

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.

Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.

View Article and Find Full Text PDF

Polyacrylonitrile (PAN)-based composite solid electrolytes (CSEs) hold great promise in the practical deployment of solid lithium batteries (SLBs) owing to their high voltage stability but suffer from poor stability against Li-metal. Herein, a poly(1,3-dioxolane) (PDOL)-graphitic CN (g-CN, i.e.

View Article and Find Full Text PDF

Lab on a single microbead: An enzyme-free strategy for the sensitive detection of microRNA via efficient localized catalytic hairpin assembly.

Anal Chim Acta

February 2025

Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China. Electronic address:

Background: Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process.

View Article and Find Full Text PDF

Microplastics, particles between 0.001 and 5 mm in diameter, are ubiquitous in the environment and their consumption by aquatic organisms is known to lead to a variety of adverse effects. However, studies on the effects of microplastics on prey fish have not shown consistent trends, with results varying across species and plastic type used.

View Article and Find Full Text PDF

Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!