Novices recognize objects at the basic-category level (e.g., dog, chair, and bird) at which identification is based on the global form of the objects (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). In contrast, experts recognize objects within their domain of expertise at the subordinate level (e.g., Sparrow or Finch) for which the internal object information may play an important role in identification (Tanaka & Taylor, 1991). To investigate whether expert recognition relies on internal object information, we band-pass filtered bird images over a range of spatial frequencies (SF) and then masked the filtered image to preserve its global form. In Experiment 1, bird experts categorized common birds at the family level (e.g., Robin or Sparrow) more quickly and more accurately than novices. Both experts and novices were more accurate when bird images contained the internal information represented by a middle range of SFs, and this finding was characterized by a quadratic function in which accuracy decreased toward each end of the SF spectrum. However, the experts, but not the novices, showed a similar quadratic relationship between response times and SF range. In Experiment 2, experts categorized Warblers and Finches at the more specific, species level (e.g., Wilson's Warbler or House Finch). Recognition was again fastest and most accurate for images filtered in the middle range of SFs. Collectively, these results indicate that a midrange of SFs contain crucial information for subordinate recognition, and that extensive perceptual experience can influence the efficiency with which this information is utilized. (PsycINFO Database Record
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/xhp0000139 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!