The use of a spatial light modulator for implementing a digital phase-shifting (PS) point diffraction interferometer (PDI) allows tunability in fringe spacing and in achieving PS without the need for mechanically moving parts. However, a small amount of detector or scatter noise could affect the accuracy of wavefront sensing. Here, a novel method of wavefront reconstruction incorporating a virtual Hartmann-Shack (HS) wavefront sensor is proposed that allows easy tuning of several wavefront sensor parameters. The proposed method was tested and compared with a Fourier unwrapping method implemented on a digital PS PDI. The rewrapping of the Fourier reconstructed wavefronts resulted in phase maps that matched well the original wrapped phase and the performance was found to be more stable and accurate than conventional methods. Through simulation studies, the superiority of the proposed virtual HS phase unwrapping method is shown in comparison with the Fourier unwrapping method in the presence of noise. Further, combining the two methods could improve accuracy when the signal-to-noise ratio is sufficiently high.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.025425DOI Listing

Publication Analysis

Top Keywords

wavefront sensor
12
unwrapping method
12
phase unwrapping
8
virtual hartmann-shack
8
hartmann-shack wavefront
8
fourier unwrapping
8
wavefront
5
method
5
phase
4
unwrapping virtual
4

Similar Publications

Three-Dimensional Scanning Virtual Aperture Imaging with Metasurface.

Sensors (Basel)

January 2025

Huawei Technologies Co., Ltd., Chengdu 610000, China.

Metasurface-based imaging is attractive due to its low hardware costs and system complexity. However, most of the current metasurface-based imaging systems require stochastic wavefront modulation, complex computational post-processing, and are restricted to 2D imaging. To overcome these limitations, we propose a scanning virtual aperture imaging system.

View Article and Find Full Text PDF

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface.

View Article and Find Full Text PDF

To overcome the limitations of phase sampling points in testing aspherical surface wavefronts using traditional interferometers, we propose a high-spatial-resolution method based on multi-directional orthogonal lateral shearing interferometry. In this study, we provide a detailed description of the methodology, which includes the theoretical foundations and experimental setup, along with the results from simulations and experiments. By establishing a relational model between the multi-directional differential wavefront and differential Zernike polynomials, we demonstrate high-spatial-resolution wavefront reconstruction using multi-directional orthogonal lateral shearing interferometry.

View Article and Find Full Text PDF

Integrated optical probing scheme enabled by localized-interference metasurface for chip-scale atomic magnetometer.

Nanophotonics

November 2024

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

Emerging miniaturized atomic sensors such as optically pumped magnetometers (OPMs) have attracted widespread interest due to their application in high-spatial-resolution biomagnetism imaging. While optical probing systems in conventional OPMs require bulk optical devices including linear polarizers and lenses for polarization conversion and wavefront shaping, which are challenging for chip-scale integration. In this study, an integrated optical probing scheme based on localized-interference metasurface for chip-scale OPM is developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!