The circadian time is an important process affecting both pharmacokinetics and pharmacodynamics of drugs. Consequently, the desired and/or undesired effects vary according to the time of drug administration in the 24 h scale. This study investigates whether the toxicity in liver as well as oxidative stress varies according to the circadian dosing-time of isoniazid (INH) in mice. A potentially toxic INH dose (120 mg/kg) was injected by i.p. route to different groups of animals at three different circadian times: 1, 9, and 17 Zeitgeber time (ZT). INH administration at 1 ZT resulted in a maximum hepatotoxicity assessed by the significant increase in both serum transaminase (ALAT: alanine aminotransferase) and (ASAT: aspartate aminotransferase) and antioxidant enzyme activities (catalase: CAT and superoxide dismutase: SOD). The highest malondialdehyde (MDA) level indicating an induction of lipid peroxidation resulting in oxidative damage was also observed at 1 ZT. Liver histopathology from INH groups at 9 ZT and at 1 ZT showed moderate to severe cytoplasma vacuolation, hepatocyte hypertrophy, ballooning, and necrosis. The circadian variation in INH toxicity may help realize a chronotherapy protocol in humans based on the selection of the best time associated to optimal tolerance or least side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/07420528.2015.1078808 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!