A ray tracing algorithm for an arbitrarily shaped axially symmetric graded index waveguide was proposed. This was achieved by considering the center of the waveguide (optical axis) as a set of discrete points. The refractive index depends on the distance of the ray position from the optical axis. This distance was approximated as the shortest distance between the ray position and a point in the set. Using this algorithm, ray tracing could be performed, regardless of the waveguide configuration. In this study, a precise explanation of the algorithm is given and the errors are evaluated. A technique to reduce computing time is also included.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.008795DOI Listing

Publication Analysis

Top Keywords

ray tracing
12
arbitrarily shaped
8
optical axis
8
distance ray
8
ray position
8
ray
5
tracing method
4
method arbitrarily
4
shaped radial
4
radial graded-index
4

Similar Publications

Underwater acoustic transducers need to expand the coverage of acoustic signals as much as possible in most ocean explorations, and the directivity indicators of transducers are difficult to change after the device is packaged, which makes the emergence angle of the underwater acoustic transducer limited in special operating environments, such as polar regions, submarine volcanoes, and cold springs. Taking advantage of the refractive characteristics of sound waves propagating in different media, the directivity indicators can be controlled by installing an acoustic lens outside the underwater acoustic transducer. To increase the detection range of an underwater acoustic transducer in a specific marine environment, a curvature-determining method for the diverging acoustic lens of an underwater acoustic transducer is proposed based on the acoustic ray tracing theory.

View Article and Find Full Text PDF

To improve maneuverability, the focus of photoelectric theodolites is on reducing the weight of the primary mirror and enhancing its optical performance. This study uses MOAT and Sobol methods to identify key parameters that affect design. Using the high-sensitivity part as the optimization domain, six optimization results were obtained based on the multi-objective SIMP topology optimization method and synthesized into a compromise optimization structure.

View Article and Find Full Text PDF

Rhabdophane, CePO∙HO, nanoparticles were prepared by mechanochemical synthesis with different durations and thoroughly characterized by various characterization techniques. X-ray diffraction analysis showed that the optimal synthesis duration was 15 min, since, in this case, pure rhabdophane is obtained, without traces of contamination by the vessel material. The size of the obtained nanoparticles, as determined from high-resolution transmission electron microscopy images, was around 5 nm.

View Article and Find Full Text PDF

This study evaluates the effectiveness of Total Reflection X-ray Fluorescence for multi-element analysis in mussels, focusing on sensitivity, precision, and detection limits. Additionally, it offers a cross-regional comparison of elemental composition in mussels from aquaculture farms in Italy, Spain, and Chile. TXRF, using suspensions of mussel samples, proved effective in detecting minor and trace elements, with recovery rates over 80% for Fe, Cu, Zn, As, and Sr.

View Article and Find Full Text PDF

Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when combined with Ground Granulated Blast furnace Slag (GGBS). In this process, GGBS serves as the primary raw material, EMR acts as the sulfate activator, and CaO powder, along with trace amounts of cement, functions as the alkali activator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!