In this paper, a highly sensitive gas sensor based on the microstructure core and cladding photonic crystal fiber (PCF) is presented over the wavelength range from 1.3 to 2.2 μm, which is advantageous for sensor fabrication. The guiding properties of the proposed structure are dependent on geometrical parameters and wavelengths, which are numerically investigated by using a finite element method (FEM). Introducing the microstructure core makes it possible to obtain higher relative sensitivity and achieves low confinement loss. Moreover, it can be shown that increasing the diameter of the air holes in the microstructure core and decreasing the size of hole to hole space (pitch), the relative sensitivity is enhanced. In addition, the confinement loss is reduced by increasing the value of the diameter of the air holes in the cladding. Simulation results reveal that for the optimum design of the proposed PCF it is possible to obtain the highest relative sensitivity of about 42.27% at the wavelength λ=1.33  μm for the absorption line of methane (CH) and hydrogen fluoride (HF) gases. In this case, the confinement loss of the fiber is 4.78345×10  dB/m.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.008637DOI Listing

Publication Analysis

Top Keywords

microstructure core
16
relative sensitivity
12
confinement loss
12
photonic crystal
8
crystal fiber
8
increasing diameter
8
diameter air
8
air holes
8
microstructure
4
core photonic
4

Similar Publications

Encapsulation of astilbin in zein nanoparticles with fructo-oligosaccharides and caseinate as costabilizers: Formation, stability, bioavailability, and antioxidant capacity.

Int J Biol Macromol

January 2025

National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China. Electronic address:

Zein-based nanoparticles (NPs) have attracted considerable attention as potential delivery systems for bioactive compounds. However, their application has been limited by poor stability and redispersibility. In this study, we addressed these challenges by fabricating zein nanocarriers using branching structural fructo-oligosaccharides (P-FOS) and sodium caseinate (NaCas) as costabilizers.

View Article and Find Full Text PDF

Background: In multiple sclerosis (MS), susceptibility-weighted imaging (SWI) may reveal white matter lesions (WML) with a paramagnetic rim ("paramagnetic rim lesions" [PRLs]) or diffuse hypointensity ("core-sign lesions"), reflecting different stages of WML evolution.

Objective: Using the soma and neurite density imaging (SANDI) model on diffusion-weighted magnetic resonance imaging (MRI), we characterized microstructural abnormalities of MS PRLs and core-sign lesions and their clinical relevance.

Methods: Forty MS patients and 20 healthy controls (HC) underwent a 3 T brain MRI.

View Article and Find Full Text PDF

Magnetic field-dependent magnetization of highly crystalline FeO magnetic nanoparticles has been carried out to understand surface canting structures at low and room temperatures. The exchange bias () values of ∼18 to 27 Oe at 300 K for three samples prepared from different precursors are observed; and a decrease in value is obtained when the samples are measured at 5 K. However, with a decrease in temperature, coercivity () increases.

View Article and Find Full Text PDF

Artificial intelligence (AI) and machine learning (ML) are driving innovation in biosciences and are already affecting key elements of medical scholarship and clinical care. Many schools of medicine are capitalizing on the promise of these new technologies by establishing academic units to catalyze and grow research and innovation in AI/ML. At Stanford University, we have developed a successful model for an AI/ML research center with support from academic leaders, clinical departments, extramural grants, and industry partners.

View Article and Find Full Text PDF

Copper matrix composites (Cu-MCs) have garnered significant attention due to their exceptional electrical, wear-resistant, and mechanical properties. Among them, AlO/Cu composites, reinforced with AlO, are a focal point in the field of high-strength, high-conductivity copper alloys, owing to their high strength, excellent electrical conductivity, and superior resistance to high-temperature softening. Cold deformation is an effective method for enhancing the mechanical properties of AlO/Cu composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!