The rapid occurrence of emerging infectious diseases demonstrates an urgent need for a new preclinical experimental model that reliably replicates human immune responses. Here, a new homozygous humanized human leukocyte antigen (HLA)-A11/DR1 transgenic mouse (HLA-A11(+/+)/DR01(+/+)/H-2-β2m(-/-)/IAβ(-/-)) was generated by crossing HLA-A11 transgenic (Tg) mice with HLA-A2(+/+)/DR01(+/+)/H-2-β2m(-/-)/IAβ(-/-) mice. The HLA-A11-restricted immune response of this mouse model was then examined. HLA-A11 Tg mice expressing a chimeric major histocompatibility complex (MHC) molecule comprising the α1, α2, and β2m domains of human HLA-A11 and the α3 transmembrane and cytoplasmic domains of murine H-2D(b) were generated. The correct integration of HLA-A11 and HLA-DR1 into the genome of the HLA-A11/DR1 Tg mice (which lacked the expression of endogenous H-2-I/II molecules) was then confirmed. Immunizing mice with a recombinant HBV vaccine or a recombinant HIV-1 protein resulted in the generation of IFN-γ-producing cytotoxic T lymphocyte (CTL) and antigen-specific antibodies. The HLA-A11-restricted CTL response was directed at HLA immunodominant epitopes. These mice represent a versatile animal model for studying the immunogenicity of HLA CTL epitopes in the absence of a murine MHC response. The established animal model will also be useful for evaluating and optimizing T cell-based vaccines and for studying differences in antigen processing between mice and humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964720 | PMC |
http://dx.doi.org/10.1080/21645515.2015.1103405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!