https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=26478464&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 264784642016021020181113
2041-172362015Oct19Nature communicationsNat CommunCationic cluster formation versus disproportionation of low-valent indium and gallium complexes of 2,2'-bipyridine.82888288828810.1038/ncomms9288Group 13 M(I) compounds often disproportionate into M(0) and M(III). Here, however, we show that the reaction of the M(I) salt of the weakly coordinating alkoxyaluminate [Ga(I)(C6H5F)2](+)[Al(OR(F))4](-) (R(F)=C(CF3)3) with 2,2'-bipyridine (bipy) yields the paramagnetic and distorted octahedral [Ga(bipy)3](2+)(•){[Al(OR(F))4](-)}2 complex salt. While the latter appears to be a Ga(II) compound, both, EPR and DFT investigations assign a ligand-centred [Ga(III){(bipy)3}(•)](2+) radical dication. Surprisingly, the application of the heavier homologue [(I)n(I)(C6H5F)2](+)[Al(OR(F))4](-) leads to aggregation and formation of the homonuclear cationic triangular and rhombic [In3(bipy)6](3+), [In3(bipy)5](3+) and [In4(bipy)6](4+) metal atom clusters. Typically, such clusters are formed under strongly reductive conditions. Analysing the unexpected redox-neutral cationic cluster formation, DFT studies suggest a stepwise formation of the clusters, possibly via their triplet state and further investigations attribute the overall driving force of the reactions to the strong In-In bonds and the high lattice enthalpies of the resultant ligand stabilized [M3](3+){[Al(OR(F))4](-)}3 and [M4](4+){[Al(OR(F))4](-)}4 salts.LichtenthalerMartin RMRInstitut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21 and Stefan-Meier Str. 21, 79104 Freiburg, Germany.StahlFlorianFInstitut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21 and Stefan-Meier Str. 21, 79104 Freiburg, Germany.KratzertDanielDInstitut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21 and Stefan-Meier Str. 21, 79104 Freiburg, Germany.HeidingerLorenzLInstitut für Physikalische Chemie and Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr. 21 and Albertstr. 19, 79104 Freiburg, Germany.SchleicherErikEInstitut für Physikalische Chemie and Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr. 21 and Albertstr. 19, 79104 Freiburg, Germany.HamannJulianJInstitut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21 and Stefan-Meier Str. 21, 79104 Freiburg, Germany.HimmelDanielDInstitut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21 and Stefan-Meier Str. 21, 79104 Freiburg, Germany.WeberStefanSInstitut für Physikalische Chemie and Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr. 21 and Albertstr. 19, 79104 Freiburg, Germany.KrossingIngoIInstitut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21 and Stefan-Meier Str. 21, 79104 Freiburg, Germany.engJournal ArticleResearch Support, Non-U.S. Gov't20151019
EnglandNat Commun1015285552041-1723
20152122015852015102060201510206020151020612015115epublish26478464PMC463398610.1038/ncomms9288ncomms9288Cotton F. A. Transition-metal compounds containing clusters of metal atoms. Q. Rev. Chem. Soc. 20, 389–401 (1966).Wade K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 792–793 (1971).Welch A. J. The significance and impact of Wade's rules. Chem. Commun. 49, 3615–3616 (2013).23535980Corbett J. D. Polyanionic Clusters and Networks of the Early p-Element Metals in the Solid State: Beyond the Zintl Boundary. Angew. Chem. Int. Ed. 39, 670–690 (2000).10760845Anson C. E. et al. Synthesis and crystal structures of the ligand-stabilized silver chalcogenide clusters [Ag154Se77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96], and [Ag490S188(StC5H11)114]. Angew. Chem. Int. Ed. 47, 1326–1331 (2008).18176923Schnöckel H. & Schnepf A. in The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities 402–487John Wiley & Sons, Ltd (2011).Schnöckel H. Structures and properties of metalloid al and ga clusters open our eyes to the diversity and complexity of fundamental chemical and physical processes during formation and dissolution of metals. Chem. Rev. 110, 4125–4163 (2010).20540559Masuda J. D., Schoeller W. W., Donnadieu B. & Bertrand G. NHC-mediated aggregation of P4:  isolation of a P12 cluster. J. Am. Chem. Soc. 129, 14180–14181 (2007).17973395Dohmeier C., Loos D. & Schnöckel H. Aluminum(I) and gallium(I) compounds: syntheses, structures, and reactions. Angew. Chem. Int. Ed. Engl. 35, 129–149 (1996).Jurca T., Hiscock L. K., Korobkov I., Rowley C. N. & Richeson D. S. The tipping point of the inert pair effect: experimental and computational comparison of In(I) and Sn(II) bis(imino)pyridine complexes. Dalton Trans. 43, 690–697 (2014).24141972Van Den Berg J. M. The crystal structure of the room temperature modification of indium chloride, InCl. Acta. Crystallogr. 20, 905–910 (1966).van der Vorst C. P. J. M., Verschoor G. C. & Maaskant W. J. A. The structures of yellow and red indium monochloride. Acta Crystallogr., Sect. B: Struct. Sci. 34, 3333–3335 (1978).Brukl A. & Ortner G. Die Sulfide des Galliums. Monatsh. Chem. 56, 358–364 (1930).Tuck D. G. Gallium and indium dihalides: a classic structural problem. Polyhedron 9, 377–386 (1990).Baker R. J. & Jones C. ‘GaI': a versatile reagent for the synthetic chemist. Dalton Trans. 1341–1348 (2005).15824768Malbrecht B. J., Dube J. W., Willans M. J. & Ragogna P. J. Addressing the chemical sorcery of ‘GaI': benefits of solid-state analysis aiding in the synthesis of P→Ga coordination compounds. Inorg. Chem. 53, 9644–9656 (2014).25184621Schmidbaur H. Arene complexes of univalent gallium, indium, and thallium. Angew. Chem. Int. Ed. Engl. 24, 893–904 (1985).Schenk C., Köppe R., Schnöckel H. & Schnepf A. A convenient synthesis of cyclopentadienylgallium—the awakening of a sleeping beauty in organometallic chemistry. Eur. J. Inorg. Chem. 2011, 3681–3685 (2011).Asay M., Jones C. & Driess M. N-Heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands. Chem. Rev 111, 354–396 (2011).21133370Dange D., Choong S. L., Schenk C., Stasch A. & Jones C. Synthesis and characterisation of anionic and neutral gallium(I) N-heterocyclic carbene analogues. Dalton Trans. 41, 9304–9315 (2012).22539449Linti G. & Schnöckel H. Low valent aluminum and gallium compounds—structural variety and coordination modes to transition metal fragments. Coord. Chem. Rev. 206-207, 285–319 (2000).Pardoe J. A. J. & Downs A. J. Development of the chemistry of indium in formal oxidation states lower than +3. Chem. Rev. 107, 2–45 (2007).17212469Fitz H. & Müller B. G. InBF4, das erste komplexe Fluorid mit Indium(I). Z. Anorg. Allg. Chem. 623, 579–582 (1997).Macdonald C. L. B., Corrente A. M., Andrews C. G., Taylor A. & Ellis B. D. Indium(I) trifluoromethanesulfonate and other soluble salts for univalent indium chemistry. Chem. Commun. 250–251 (2004).14737573Mazej Z. Indium(I) hexafluoropnictates (InPnF6; Pn=P, As, Sb). Eur. J. Inorg. Chem. 2005, 3983–3987 (2005).Welsch S., Bodensteiner M., Dušek M., Sierka M. & Scheer M. A novel soluble InI precursor for Pn ligand coordination chemistry. Chem. Eur. J. 16, 13041–13045 (2010).20945449Schneider U. & Kobayashi S. Low-oxidation state indium-catalyzed C–C Bond formation. Acc. Chem. Res. 45, 1331–1344 (2012).22626010Slattery J. M., Higelin A., Bayer T. & Krossing I. A simple route to univalent gallium salts of weakly coordinating anions. Angew. Chem. Int. Ed. 49, 3228–3231 (2010).20358571Higelin A., Sachs U., Keller S. & Krossing I. Univalent gallium and indium phosphane complexes: from pyramidal M(PPh3)3+ to carbene-analogous bent M(PtBu3)2+ (M=Ga, In) Complexes. Chem. Eur. J. 18, 10029–10034 (2012).22623027Higelin A., Haber C., Meier S. & Krossing I. Isolated cationic crown ether complexes of gallium(I) and indium(I). Dalton Trans. 41, 12011–12015 (2012).22777160Higelin A., Keller S., Göhringer C., Jones C. & Krossing I. Unusual Tilted carbene coordination in carbene complexes of gallium(I) and indium(I). Angew. Chem. Int. Ed. 52, 4941–4944 (2013).23554064Lichtenthaler M. R. et al. σ- or π-coordination? Complexes of univalent gallium salts with aromatic nitrogen bases. Eur. J. Inorg. Chem. 2014, 4335–4341 (2014).Lichtenthaler M. R. et al. Univalent gallium salts of weakly coordinating anions: effective initiators/catalysts for the synthesis of highly reactive polyisobutylene. Organometallics 32, 6725–6735 (2013).Lichtenthaler M. R. et al. Univalent gallium complexes of simple and ansa-Arene ligands: effects on the polymerization of isobutylene. Chem. Eur. J 21, 157–165 (2015).25382015Jones C. Bulky Guanidinates for the stabilization of low oxidation state metallacycles. Coord. Chem. Rev. 254, 1273–1289 (2010).Baker R. J., Farley R. D., Jones C., Kloth M. & Murphy D. M. The reactivity of diazabutadienes toward low oxidation state Group 13 iodides and the synthesis of a new gallium(I) carbene analogue. J. Chem. Soc., Dalton Trans. 3844–3850 (2002).Tsai Y.-C. The chemistry of univalent metal β-diketiminates. Coord. Chem. Rev. 256, 722–758 (2012).Reger D. L. Poly(pyrazolyl)borate complexes of gallium and indium. Coord. Chem. Rev. 147, 571–595 (1996).Jurca T., Lummiss J., Burchell T. J., Gorelsky S. I. & Richeson D. S. Capturing In+ monomers in a neutral weakly coordinating environment. J. Am. Chem. Soc. 131, 4608–4609 (2009).19296581Baker R. J., Jones C., Kloth M. & Mills D. P. The reactivity of gallium(I) and indium(I) halides towards bipyridines, terpyridines, imino-substituted pyridines and bis(imino)acenaphthenes. New J. Chem. 28, 207–213 (2004).Jurca T. et al. Disproportionation and radical formation in the coordination of ‘GaI' with bis(imino)pyridines. Dalton Trans. 39, 1266–1272 (2010).20104353Bondi A. van der Waals volumes and Radii. J. Phys. Chem. 68, 441–451 (1964).Mantina M., Chamberlin A. C., Valero R., Cramer C. J. & Truhlar D. G. Consistent van der Waals Radii for the whole main group. J. Phys. Chem. A 113, 5806–5812 (2009).PMC365883219382751Baker R. J., Bettentrup H. & Jones C. The reactivity of primary and secondary amines, secondary phosphanes and N-heterocyclic carbenes towards Group-13 metal(I) halides. Eur. J. Inorg. Chem. 2003, 2446–2451 (2003).Protchenko A. V. et al. Stable GaX2, InX2 and TlX2 radicals. Nat. Chem 6, 315–319 (2014).24651198Cloke F. G. N., Hanson G. R., Henderson M. J., Hitchcock P. B. & Raston C. L. Synthesis and X-ray crystal structure of the first homoleptic main group diazadiene complex, bis(1,4-di-t-butyl-1,4-diazabuta-1,3-diene) gallium. J. Chem. Soc., Chem. Commun. 1002–1003 (1989).Kaim W. & Matheis W. Bis(1,4-di-tert-butyl-1,4-diazabutadiene)gallium is not a gallium(II) compound. J. Chem. Soc., Chem. Commun. 597–598 (1991).Baker R. J. et al. An EPR and ENDOR Investigation of a Series of Diazabutadiene–Group 13 Complexes. Chem. Eur. J. 11, 2972–2982 (2005).15761911Tuononen H. M. & Armstrong A. F. Theoretical investigation of paramagnetic diazabutadiene gallium(III)−pnictogen complexes: insights into the interpretation and simulation of electron paramagnetic resonance spectra. Inorg. Chem. 44, 8277–8284 (2005).16270966Tuononen H. M. & Armstrong A. F. Theoretical investigation of paramagnetic group 13 diazabutadiene radicals: insights into the prediction and interpretation of EPR spectroscopy parameters. Dalton Trans. 1885–1894 (2006).16585976Záliš S. et al. Origin of electronic absorption spectra of MLCT-excited and one-electron reduced 2,2′-bipyridine and 1,10-phenanthroline complexes. Inorg. Chim. Acta 374, 578–585 (2011).Gore-Randall E., Irwin M., Denning M. S. & Goicoechea J. M. synthesis and characterization of alkali-metal salts of 2,2′- and 2,4′-bipyridyl radicals and dianions. Inorg. Chem. 48, 8304–8316 (2009).19673484Wang M., Weyhermueller T., England J. & Wieghardt K. Molecular and Electronic structures of six-coordinate ‘low-valent' [M(Mebpy)3]0 (M=Ti, V, Cr, Mo) and [M(tpy)2]0 (M=Ti, V, Cr), and seven-coordinate [MoF(Mebpy)3](PF6) and [MX(tpy)2](PF6) (M=Mo, X=Cl and M=W, X=F). Inorg. Chem. 52, 12763–12776 (2013).24116685Li X.-W., Pennington W. T. & Robinson G. H. Metallic system with aromatic character. synthesis and molecular structure of Na2[[(2,4,6-Me3C6H2)2C6H3]Ga]3 the first cyclogallane. J. Am. Chem. Soc. 117, 7578–7579 (1995).Wiberg N. et al. On the Gallanyls R*3Ga2· and R*4Ga3 As Well As Gallanides R*3Ga2− and R*4Ga3− (R*=SitBu3)—Syntheses, Characterization, Structures. Eur. J. Inorg. Chem. 2001, 1719–1727 (2001).Litters S., Kaifer E., Enders M. & Himmel H.-J. A boron–boron coupling reaction between two ethyl cation analogues. Nat. Chem 5, 1029–1034 (2013).24256867Mingos D. M. P. General theory for cluster and ring compounds of the main group and transition elements. Nat. Phys. Sci 236, 99–102 (1972).Krossing I. The facile preparation of weakly coordinating anions: structure and characterisation of silver polyfluoroalkoxyaluminates AgAl(ORF)4, calculation of the alkoxide ion affinity. Chem. Eur. J 7, 490–502 (2001).11271536Power P. P. in Group 13 Chemistry I Vol. 103 Structure and Bonding Ch. 2 57–84Springer Berlin Heidelberg (2002).Driess M. & Grützmacher H. Main group element analogues of carbenes, olefins, and small rings. Angew. Chem. Int. Ed. Engl. 35, 828–856 (1996).Kaim W. Manifestations of noninnocent ligand behavior. Inorg. Chem. 50, 9752–9765 (2011).21744793Sundermann A., Reiher M. & Schoeller W. W. Isoelectronic arduengo-type carbene analogues with the group IIIa elements boron, aluminum, gallium, and indium. Eur. J. Inorg. Chem. 1998, 305–310 (1998).Allan C. J., Cooper B. F. T., Cowley H. J., Rawson J. M. & Macdonald C. L. B. Non-innocent ligand effects on low-oxidation-state indium complexes. Chem. Eur. J. 19, 14470–14483 (2013).24038535Hellmann K. W. et al. metal–ligand versus metal–metal redox chemistry: thallium(I)-Induced synthesis of 4,9-diaminoperylenequinone-3,10-diimine derivatives. Angew. Chem. Int. Ed. 37, 1948–1952 (1998).Klamt A. & Schuurmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2, 799–805 (1993).Jenkins H. D. B., Roobottom H. K., Passmore J. & Glasser L. Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg. Chem. 38, 3609–3620 (1999).11671116Brack M. The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65, 677–732 (1993).Morton J. R. & Preston K. F. Atomic parameters for paramagnetic resonance data. J. Magn. Reson. 30, 577–582 (1978).Weil J. A. & Bolton J. R. in Electron Paramagnetic Resonance 583John Wiley & Sons, Inc. (2006).Dedieu A. & Hoffmann R. Platinum(0)-platinum(0) dimers. Bonding relationships in a d10-d10 system. J. Am. Chem. Soc. 100, 2074–2079 (1978).