The aim of this work was to develop and characterize nanoparticles as carriers of lapazine, a phenazine derived from β-lapachone; its antimycobacterial activity is described for the first time as a potential treatment for tuberculosis. The lapazine was synthesized, and by using gas chromatography coupled to a flame ionization detector, it was possible to evaluate its purity degree of almost 100%. For better elucidation of the molecular structure, mass spectroscopy and 1H NMR were carried out and compared to the literature values. Lapazine was assayed in vitro against H37Rv Mycobacterium tuberculosis and a rifampicin-resistant strain, with minimum inhibitory concentration values of 3.00 and 1.56 μg mL(-1), respectively. The nanoparticles showed a polydispersity index of 0.16,mean diameter of 188.5 ± 1.7 mm, zeta potential of -15.03 mV, and drug loading of 54.71 mg g(-1) for poly-ε-caprolactone (PCL) nanoparticles and a polydispersity index of 0.318,mean diameter of 197.4 ± 2.7 mm, zeta potential of -13.43 mV and drug loading of 137.07 mg g(-1) for poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. These results indicate that both polymeric formulations have good characteristics as potential lapazine carriers in the treatment of tuberculosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2015.08.062 | DOI Listing |
The development of an effective and rapid method for healing the skin is of crucial importance. In this study, we prepared a porous scaffold made of polycaprolactone (PCL) and carbon quantum dots (CQDs), Fe, and Chitosan (Cs) as the scaffold core to cover the skin. Then evaluated antibacterial, biocompatibility, and wound healing properties as well as the expression of genes effective in wound healing.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Marquette University School of Dentistry, Milwaukee, Wisconsin, USA.
In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
() infections are increasingly challenging due to their propensity to form biofilms and low outer membrane permeability, especially in chronically infected patients with thick mucus. exhibits multiple drug resistance mechanisms, making it one of the most significant global public health threats. In this study, we found that moxifloxacin (MXC) and antibacterial peptides (ε-poly-l-lysine, ε-PLL) exhibited a synergistic effect against multidrug-resistant (MDR-).
View Article and Find Full Text PDFMacromol Biosci
January 2025
Institute for Technical Chemistry, Macromolecular Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!