Cnidarian-dinoflagellate symbiosis mainly relies on nutrient recycling, thus providing both partners with a competitive advantage in nutrient-poor waters. Essential processes related to lipid metabolism can be influenced by various factors, including hyperthermal stress. This can affect the lipid content and distribution in both partners, while contributing to symbiosis disruption and bleaching. In order to gain further insight into the role and distribution of lipids in the cnidarian metabolism, we investigated the lipid composition of the sea anemone Anemonia viridis and its photosynthetic dinoflagellate endosymbionts (Symbiodinium). We compared the lipid content and fatty acid profiles of the host cellular layers, non-symbiotic epidermal and symbiont-containing gastrodermal cells, and those of Symbiodinium, in a mass spectrometry-based assessment. Lipids were more concentrated in Symbiodinium cells, and the lipid class distribution was dominated by polar lipids in all tissues. The fatty acid distribution between host cell layers and Symbiodinium cells suggested potential lipid transfers between the partners. The lipid composition and distribution was modified during short-term hyperthermal stress, mainly in Symbiodinium cells and gastrodermis. Exposure to elevated temperature rapidly caused a decrease in polar lipid C18 unsaturated fatty acids and a strong and rapid decrease in the abundance of polar lipid fatty acids relative to sterols. These lipid indicators could therefore be used as sensitive biomarkers to assess the physiology of symbiotic cnidarians, especially the effect of thermal stress at the onset of cnidarian bleaching. Overall, the findings of this study provide some insight on key lipids that may regulate maintenance of the symbiotic interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2015.10.017 | DOI Listing |
Tissue Cell
October 2024
Graduate Program in Animal Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil. Electronic address:
Global coverage of living coral has declined by half since 1950s. Reef-building species have been severely impacted in this climate crisis scenario, compromising the future of coral reefs. Despite their importance, there is a lack of knowledge regarding the reproductive biology of scleractinian corals.
View Article and Find Full Text PDFEnviron Pollut
April 2024
Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China. Electronic address:
Microplastics, ubiquitous anthropogenic marine pollutants, represent potential threats to coral-Symbiodiniaceae relationships in global reef ecosystems. However, the mechanism underlying the impacts of polystyrene microplastics (PS-MPs) on Symbiodiniaceae remains poorly understood. In this study, the cytological, physiological, and microbial responses of Symbiodinium tridacnidorum, a representative Symbiodiniaceae species, to varying concentrations of PS-MPs (0, 5, 50, 100, and 200 mg L) were investigated.
View Article and Find Full Text PDFZoolog Sci
December 2023
Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan,
Coral-dinoflagellate symbiosis is a unique biological phenomenon, in which animal cells engulf single-celled photosynthetic algae and maintain them in their cytoplasm mutualistically. Studies are needed to reveal the complex mechanisms involved in symbiotic processes, but it is difficult to answer these questions using intact corals. To tackle these issues, our previous studies established an in vitro system of symbiosis between cells of the scleractinian coral and the dinoflagellate , and showed that corals direct phagocytosis, while algae are likely engulfed by coral cells passively.
View Article and Find Full Text PDFInsects
October 2023
Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Plenty of freshwater species, especially macroinvertebrates that are essential to the provision of numerous ecosystem functions, encounter higher mortality due to acute hypoxia. However, within the family Chironomidae, a wide range of tolerance to hypoxia/anoxia is displayed. depends on this great tolerance to become a dominant species in eutrophic lakes.
View Article and Find Full Text PDFPLoS One
November 2023
Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México-UNAM, Puerto Morelos, Quintana Roo, México.
The coding and promoter region sequences from the BiP-like protein SBiP1 from Symbiodinium microadriaticum CassKB8 were obtained by PCR, sequenced and compared with annotated sequences. The nucleotides corresponding to the full sequence were correctly annotated and the main SBiP1 features determined at the nucleotide and amino acid level. The translated protein was organized into the typical domains of the BiP/HSP70 family including a signal peptide, a substrate- and a nucleotide-binding domain, and an ER localization sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!