Hydroxamic acids (HAs) perform tasks in medicine and industry that require bidentate metal binding. The two favored conformations of HAs are related by rotation around the C(=O)-N bond. The conformations are unequal in stability. Recently, we reported that the most stable conformation of a small secondary HA in water places the oxygen atoms anti to one another. The barrier to C-N bond rotation may therefore modulate metal binding by secondary HAs in aqueous media. We have now determined the activation barrier to C-N rotation from major to minor conformation of a small secondary HA in D2O to be 67.3 kJ/mol. The HA rotational barrier scales with solvent polarity, as is observed in amides, although the HA barrier is less than that of a comparable tertiary amide in aqueous solution. Successful design of new secondary HAs to perform specific tasks requires solid understanding of rules governing HA structural behavior. Results from this work provide a more complete foundation for HA design efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.4318 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!